Coverart for item
The Resource A course in p-adic analysis, Alain M. Robert

A course in p-adic analysis, Alain M. Robert

Label
A course in p-adic analysis
Title
A course in p-adic analysis
Statement of responsibility
Alain M. Robert
Creator
Subject
Language
eng
Summary
"This book offers a presentation of basic p-adic analysis. The author is especially interested in the analytical topics in this field. Some of the features that are not treated in other introductory p-adic analysis texts are topological models of p-adic spaces inside Euclidean space, a construction of spherically complete fields, a p-adic mean value theorem and some consequences, a special case of Hazewinkel's functional equation lemma, a remainder formula for the Mahler expansion, and a treatment of analytic elements."--BOOK JACKET
Member of
Cataloging source
DLC
http://library.link/vocab/creatorName
Robert, Alain
Dewey number
512/.74
Illustrations
illustrations
Index
index present
LC call number
QA241
LC item number
.R597 2000
Literary form
non fiction
Nature of contents
bibliography
Series statement
Graduate Texts in mathematics
Series volume
198
http://library.link/vocab/subjectName
p-adic analysis
Label
A course in p-adic analysis, Alain M. Robert
Instantiates
Publication
Bibliography note
Includes bibliographical references (pages [423]-424) and index
Carrier category
volume
Carrier category code
nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
1. p-adic Numbers -- 1. The Ring Z[subscript p] of p-adic Integers -- 2. The Compact Space Z[subscript p] -- 3. Topological Algebra -- 4. Projective Limits -- 5. The Field Q[subscript p] of p-adic Numbers -- 6. Hensel's Philosophy -- Appendix: The p-adic Solenoid -- 2. Finite Extensions of the Field of p-adic Numbers -- 1. Ultrametric Spaces -- 2. Absolute Values on the Field Q -- 3. Finite-Dimensional Vector Spaces -- 4. Structure of p-adic Fields -- Appendix: Classification of Locally Compact Fields -- 3. Construction of Universal p-adic Fields -- 1. The Algebraic Closure Q[subscript p][superscript a] of Q[subscript p] -- 2. Definition of a Universal p-adic Field -- 3. The Completion C[subscript p] of the Field Q[subscript p][superscript a] -- 4. Multiplicative Structure of C[subscript p] -- Appendix: Filters and Ultrafilters -- 4. Continuous Functions on Z[subscript p] -- 1. Functions of an Integer Variable -- 2. Continuous Functions on Z[subscript p] -- 3. Locally Constant Functions on Z[subscript p] -- 4. Ultrametric Banach Spaces -- 5. Umbral Calculus -- 6. Generating Functions -- 5. Differentiation -- 1. Differentiability -- 2. Restricted Formal Power Series -- 3. The Mean Value Theorem -- 4. The Exponentiel and Logarithm -- 5. The Volkenborn Integral -- 6. Analytic Functions and Elements -- 1. Power Series -- 2. Zeros of Power Series -- 3. Rational Functions -- 4. Analytic Elements -- 7. Special Functions, Congruences -- 1. The Gamma Function [Gamma][subscript p] -- 2. The Artin-Hasse Exponential -- 3. The Hazewinkel Theorem and Honda Congruences -- Basic Principles of Ultrametric Analysis
Control code
42290178
Dimensions
25 cm
Extent
xv, 437 pages
Isbn
9780387986692
Isbn Type
(acid-free paper)
Lccn
99044784
Media category
unmediated
Media MARC source
rdamedia
Media type code
n
Other physical details
illustrations
Label
A course in p-adic analysis, Alain M. Robert
Publication
Bibliography note
Includes bibliographical references (pages [423]-424) and index
Carrier category
volume
Carrier category code
nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
1. p-adic Numbers -- 1. The Ring Z[subscript p] of p-adic Integers -- 2. The Compact Space Z[subscript p] -- 3. Topological Algebra -- 4. Projective Limits -- 5. The Field Q[subscript p] of p-adic Numbers -- 6. Hensel's Philosophy -- Appendix: The p-adic Solenoid -- 2. Finite Extensions of the Field of p-adic Numbers -- 1. Ultrametric Spaces -- 2. Absolute Values on the Field Q -- 3. Finite-Dimensional Vector Spaces -- 4. Structure of p-adic Fields -- Appendix: Classification of Locally Compact Fields -- 3. Construction of Universal p-adic Fields -- 1. The Algebraic Closure Q[subscript p][superscript a] of Q[subscript p] -- 2. Definition of a Universal p-adic Field -- 3. The Completion C[subscript p] of the Field Q[subscript p][superscript a] -- 4. Multiplicative Structure of C[subscript p] -- Appendix: Filters and Ultrafilters -- 4. Continuous Functions on Z[subscript p] -- 1. Functions of an Integer Variable -- 2. Continuous Functions on Z[subscript p] -- 3. Locally Constant Functions on Z[subscript p] -- 4. Ultrametric Banach Spaces -- 5. Umbral Calculus -- 6. Generating Functions -- 5. Differentiation -- 1. Differentiability -- 2. Restricted Formal Power Series -- 3. The Mean Value Theorem -- 4. The Exponentiel and Logarithm -- 5. The Volkenborn Integral -- 6. Analytic Functions and Elements -- 1. Power Series -- 2. Zeros of Power Series -- 3. Rational Functions -- 4. Analytic Elements -- 7. Special Functions, Congruences -- 1. The Gamma Function [Gamma][subscript p] -- 2. The Artin-Hasse Exponential -- 3. The Hazewinkel Theorem and Honda Congruences -- Basic Principles of Ultrametric Analysis
Control code
42290178
Dimensions
25 cm
Extent
xv, 437 pages
Isbn
9780387986692
Isbn Type
(acid-free paper)
Lccn
99044784
Media category
unmediated
Media MARC source
rdamedia
Media type code
n
Other physical details
illustrations

Library Locations

    • Thomas Jefferson LibraryBorrow it
      1 University Blvd, St. Louis, MO, 63121, US
      38.710138 -90.311107
Processing Feedback ...