Coverart for item
The Resource A first course in noncommutative rings, T.Y. Lam

A first course in noncommutative rings, T.Y. Lam

Label
A first course in noncommutative rings
Title
A first course in noncommutative rings
Statement of responsibility
T.Y. Lam
Creator
Subject
Language
eng
Summary
"A First Course in Noncommutative Rings, an outgrowth of the author's lectures at the University of California at Berkeley, is intended as a textbook for a one-semester course in basic ring theory. By aiming the level of writing at the novice rather than the connoisseur and by stressing the role of examples and motivation, the author has produced a text that is suitable not only for use in a graduate course, but also for self-study in the subject by interested graduate students. More than 400 exercises testing the understanding of the general theory in the text are included in this new edition."--BOOK JACKET
Member of
Cataloging source
DLC
http://library.link/vocab/creatorDate
1942-
http://library.link/vocab/creatorName
Lam, T. Y.
Dewey number
512/.4
Index
index present
LC call number
QA251.4
LC item number
.L36 2001
Literary form
non fiction
Nature of contents
bibliography
Series statement
Graduate texts in mathematics
Series volume
131
http://library.link/vocab/subjectName
Noncommutative rings
Label
A first course in noncommutative rings, T.Y. Lam
Instantiates
Publication
Bibliography note
Includes bibliographical references (pages 370-371) and index
Carrier category
volume
Carrier category code
nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
Machine generated contents note: CHAPTER 1 -- Wedderburn-Artin Theory --1. Basic Terminology and Examples -- Exercises for 1 -- 2. Semisimplicity -- Exercises for 2 -- 3. Structure of Semisimple Rings -- Exercises for 3 --CHAPTER 2 -- Jacobson Radical Theory --4. The Jacobson Radical -- Exercises for 4 -- 5. Jacobson Radical Under Change of Rings -- Exercises for 5 -- 6. Group Rings and the J-Semisimplicity Problem -- Exercises for 6 --CHAPTER 3 -- Introduction to Representation Theory --7. Modules over Finite-Dimensional Algebras -- Exercises for 7 --8. Representations of Groups -- Exercises for 8 -- 9. Linear Groups -- Exercises for 9 CHAPTER 4 -- Prime and Primitive Rings --10. The Prime Radical; Prime and Semiprime Rings -- Exercises for 10 -- 11. Structure of Primitive Rings; the Density Theorem -- Exercises for 11 -- 12. Subdirect Products and Commutativity Theorems -- Exercises for 12 CHAPTER 5 -- Introduction to Division Rings --13. Division Rings -- Exercises for 13 -- 14. Some Classical Constructions -- Exercises for 14 -- 15. Tensor Products and Maximal Subfields -- Exercises for 15 -- 16. Polynomials over Division Rings -- Exercises for 16 CHAPTER 6 -- Ordered Structures in Rings --17. Orderings and Preorderings in Rings -- Exercises for 17 -- 18. Ordered Division Rings -- Exercises for 18 CHAPTER 7 -- Local Rings, Semilocal Rings, and Idempotents --19. Local Rings -- Exercises for 19 -- 20. Semilocal Rings -- Appendix: Endomorphism Rings of Uniserial Modules -- Exercises for 20 -- 21. Th Theory of Idempotents -- Exercises for 21 -- 22. Central Idempotents and Block Decompositions -- Exercises for 22 -- CHAPTER 8 -- Perfect and Semiperfect Rings --23. Perfect and Semiperfect Rings -- Exercises for 23 -- 24. Homological Characterizations of Perfect and Semiperfect Rings -- Exercises for 24 -- 25. Principal Indecomposables and Basic Rings -- Exercises for 25
Control code
45270372
Dimensions
25 cm
Edition
2nd ed.
Extent
xix, 385 pages
Isbn
9780387951836
Isbn Type
(alk. paper)
Lccn
00052277
Media category
unmediated
Media MARC source
rdamedia
Media type code
n
Label
A first course in noncommutative rings, T.Y. Lam
Publication
Bibliography note
Includes bibliographical references (pages 370-371) and index
Carrier category
volume
Carrier category code
nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
Machine generated contents note: CHAPTER 1 -- Wedderburn-Artin Theory --1. Basic Terminology and Examples -- Exercises for 1 -- 2. Semisimplicity -- Exercises for 2 -- 3. Structure of Semisimple Rings -- Exercises for 3 --CHAPTER 2 -- Jacobson Radical Theory --4. The Jacobson Radical -- Exercises for 4 -- 5. Jacobson Radical Under Change of Rings -- Exercises for 5 -- 6. Group Rings and the J-Semisimplicity Problem -- Exercises for 6 --CHAPTER 3 -- Introduction to Representation Theory --7. Modules over Finite-Dimensional Algebras -- Exercises for 7 --8. Representations of Groups -- Exercises for 8 -- 9. Linear Groups -- Exercises for 9 CHAPTER 4 -- Prime and Primitive Rings --10. The Prime Radical; Prime and Semiprime Rings -- Exercises for 10 -- 11. Structure of Primitive Rings; the Density Theorem -- Exercises for 11 -- 12. Subdirect Products and Commutativity Theorems -- Exercises for 12 CHAPTER 5 -- Introduction to Division Rings --13. Division Rings -- Exercises for 13 -- 14. Some Classical Constructions -- Exercises for 14 -- 15. Tensor Products and Maximal Subfields -- Exercises for 15 -- 16. Polynomials over Division Rings -- Exercises for 16 CHAPTER 6 -- Ordered Structures in Rings --17. Orderings and Preorderings in Rings -- Exercises for 17 -- 18. Ordered Division Rings -- Exercises for 18 CHAPTER 7 -- Local Rings, Semilocal Rings, and Idempotents --19. Local Rings -- Exercises for 19 -- 20. Semilocal Rings -- Appendix: Endomorphism Rings of Uniserial Modules -- Exercises for 20 -- 21. Th Theory of Idempotents -- Exercises for 21 -- 22. Central Idempotents and Block Decompositions -- Exercises for 22 -- CHAPTER 8 -- Perfect and Semiperfect Rings --23. Perfect and Semiperfect Rings -- Exercises for 23 -- 24. Homological Characterizations of Perfect and Semiperfect Rings -- Exercises for 24 -- 25. Principal Indecomposables and Basic Rings -- Exercises for 25
Control code
45270372
Dimensions
25 cm
Edition
2nd ed.
Extent
xix, 385 pages
Isbn
9780387951836
Isbn Type
(alk. paper)
Lccn
00052277
Media category
unmediated
Media MARC source
rdamedia
Media type code
n

Library Locations

    • Thomas Jefferson LibraryBorrow it
      1 University Blvd, St. Louis, MO, 63121, US
      38.710138 -90.311107
Processing Feedback ...