Coverart for item
The Resource Beneficiation of phosphate ore, by S. Komar Kawatra and J.T. Carlson

Beneficiation of phosphate ore, by S. Komar Kawatra and J.T. Carlson

Label
Beneficiation of phosphate ore
Title
Beneficiation of phosphate ore
Statement of responsibility
by S. Komar Kawatra and J.T. Carlson
Creator
Subject
Genre
Language
eng
Summary
Beneficiation of Phosphate Ore examines various methods for processing phosphate rock, an important mineral commodity used in the production of phosphoric acid. The majority of phosphoric acid is produced by the wet process, in which phosphate rock is reacted with sulfuric acid to produce phosphoric acid and gypsum (calcium sulfate dihydrate). This wet process demands a phosphate rock feed that meets certain specifications to produce phosphoric acid efficiently and economically
Member of
Cataloging source
N$T
http://library.link/vocab/creatorName
Kawatra, S. K
Dewey number
622/.7
Index
index present
LC call number
TN538.P43
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/subjectName
  • Phosphates
  • Ore-dressing
  • TECHNOLOGY & ENGINEERING
  • Ore-dressing
  • Phosphates
Label
Beneficiation of phosphate ore, by S. Komar Kawatra and J.T. Carlson
Instantiates
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Cover; Title Page; Copyright; Contents; List of Figures; List of Tables; Preface; 1: Introduction; 1.1 Feed Requirements for Phosphoric Acid Production; 1.2 Phosphate Rock Production Statistics and Reserves; 2: Sources of Phosphate Rock; 2.1 Common Phosphate Minerals; 2.1.1 Apatite; 2.1.2 Francolite; 2.1.3 Collophane; 2.1.4 Dahllite; 2.2 Common Gangue Minerals; 2.1.1 Clays; 2.2.2 Quartz; 2.2.3 Dolomite; 2.2.4 Calcite; 2.3 Mineralogy of Sedimentary Phosphates; 2.4 Mineralogy of Igneous Phosphates; 2.5 Mineralogy of Biogenic (Island) Deposits
  • 3: Beneficiation of Siliceous Sedimentary Phosphate Ores3.1 Flotation Feed Preparation-Washing, Sizing, and Desliming; 3.1.1 Industrial Phosphate Washing Plant; 3.2 Theory of Phosphate Flotation; 3.2.1 Froth Flotation Devices; 3.2.2 Contact Angle Theory; 3.2.3 Entrainment Theory; 3.2.4 Surface Properties and Water Chemistry of Siliceous Phosphates; 3.3 Crago Double Float Process; 3.3.1 Stage 1-Anionic Fatty Acid/Fuel Oil Phosphate Flotation; 3.3.2 Stage 2-Cationic Amine Silica Flotation; 3.3.3 Industrial Flotation Plant for Siliceous Sedimentary Phosphate Ores
  • 3.4 Proposed Alternatives to the Crago Double Float Process3.4.1 Reverse Crago Process; 3.4.2 All-Anionic (Fatty Acid/Fuel Oil Collector) Process; 3.4.3 All-Cationic (Amine) Process; 3.5 Conclusions from Siliceous Sedimentary Phosphate Ore Processing; 4: Beneficiation of High-MgO Sedimentary Phosphate Ores; 4.1 Mineralogy of High-MgO Sedimentary Phosphate Ores; 4.2 Acid Leaching of Carbonaceous Phosphate Ores; 4.2.1 Strong Acid Leaching; 4.2.2 Organic Acid Leaching; 4.2.3 Summary of Acid Leaching for the Removal of MgO (Dolomite, CaMg(CO3)2) from Phosphate Ores
  • 4.3 Thermal Decomposition (Calcination)4.3.1 Calcination Reactions and Decomposition Temperatures; 4.3.2 Quenching and Desliming of Calcined Phosphate Ore; 4.3.3 Effects of Calcination on the Reactivity of Phosphate Products; 4.3.4 Process Considerations for Calcination of Carbonaceous Sedimentary Phosphate Ores; 4.3.5 Calcination as a Method for the Removal of MgO from Phosphate Ore; 4.4 Beneficiation of Phosphate Ore by Physical Separation Methods; 4.4.1 Desliming, Attrition Scrubbing, and Sizing; 4.4.2 Sizing and Selective Crushing; 4.4.3 Heavy-Media Separation; 4.4.4 Jigging
  • 4.4.5 Summary of Physical Separation Methods for Removal of MgO from Phosphate Ores4.5 Flotation; 4.5.1 University of Florida Two-Stage Conditioning Process; 4.5.2 Tennessee Valley Authority Diphosphonic Acid Depressant Process; 4.5.3 U.S. Bureau of Mines Anionic Flotation Process; 4.5.4 IMC Cationic Flotation Process; 4.5.5 IMC Anionic Flotation Process; 4.5.6 Summary of Flotation for Removal of Dolomite from Phosphate Ores; 4.6 Selective Flocculation; 4.6.1 Flocculants for the Apatite/Dolomite/Silica System; 4.6.2 Factors Affecting Selectivity of Flocculation Processes
Control code
864900435
Dimensions
unknown
Edition
First edition.
Extent
1 online resource
File format
unknown
Form of item
online
Isbn
9780873353922
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)864900435
Label
Beneficiation of phosphate ore, by S. Komar Kawatra and J.T. Carlson
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Cover; Title Page; Copyright; Contents; List of Figures; List of Tables; Preface; 1: Introduction; 1.1 Feed Requirements for Phosphoric Acid Production; 1.2 Phosphate Rock Production Statistics and Reserves; 2: Sources of Phosphate Rock; 2.1 Common Phosphate Minerals; 2.1.1 Apatite; 2.1.2 Francolite; 2.1.3 Collophane; 2.1.4 Dahllite; 2.2 Common Gangue Minerals; 2.1.1 Clays; 2.2.2 Quartz; 2.2.3 Dolomite; 2.2.4 Calcite; 2.3 Mineralogy of Sedimentary Phosphates; 2.4 Mineralogy of Igneous Phosphates; 2.5 Mineralogy of Biogenic (Island) Deposits
  • 3: Beneficiation of Siliceous Sedimentary Phosphate Ores3.1 Flotation Feed Preparation-Washing, Sizing, and Desliming; 3.1.1 Industrial Phosphate Washing Plant; 3.2 Theory of Phosphate Flotation; 3.2.1 Froth Flotation Devices; 3.2.2 Contact Angle Theory; 3.2.3 Entrainment Theory; 3.2.4 Surface Properties and Water Chemistry of Siliceous Phosphates; 3.3 Crago Double Float Process; 3.3.1 Stage 1-Anionic Fatty Acid/Fuel Oil Phosphate Flotation; 3.3.2 Stage 2-Cationic Amine Silica Flotation; 3.3.3 Industrial Flotation Plant for Siliceous Sedimentary Phosphate Ores
  • 3.4 Proposed Alternatives to the Crago Double Float Process3.4.1 Reverse Crago Process; 3.4.2 All-Anionic (Fatty Acid/Fuel Oil Collector) Process; 3.4.3 All-Cationic (Amine) Process; 3.5 Conclusions from Siliceous Sedimentary Phosphate Ore Processing; 4: Beneficiation of High-MgO Sedimentary Phosphate Ores; 4.1 Mineralogy of High-MgO Sedimentary Phosphate Ores; 4.2 Acid Leaching of Carbonaceous Phosphate Ores; 4.2.1 Strong Acid Leaching; 4.2.2 Organic Acid Leaching; 4.2.3 Summary of Acid Leaching for the Removal of MgO (Dolomite, CaMg(CO3)2) from Phosphate Ores
  • 4.3 Thermal Decomposition (Calcination)4.3.1 Calcination Reactions and Decomposition Temperatures; 4.3.2 Quenching and Desliming of Calcined Phosphate Ore; 4.3.3 Effects of Calcination on the Reactivity of Phosphate Products; 4.3.4 Process Considerations for Calcination of Carbonaceous Sedimentary Phosphate Ores; 4.3.5 Calcination as a Method for the Removal of MgO from Phosphate Ore; 4.4 Beneficiation of Phosphate Ore by Physical Separation Methods; 4.4.1 Desliming, Attrition Scrubbing, and Sizing; 4.4.2 Sizing and Selective Crushing; 4.4.3 Heavy-Media Separation; 4.4.4 Jigging
  • 4.4.5 Summary of Physical Separation Methods for Removal of MgO from Phosphate Ores4.5 Flotation; 4.5.1 University of Florida Two-Stage Conditioning Process; 4.5.2 Tennessee Valley Authority Diphosphonic Acid Depressant Process; 4.5.3 U.S. Bureau of Mines Anionic Flotation Process; 4.5.4 IMC Cationic Flotation Process; 4.5.5 IMC Anionic Flotation Process; 4.5.6 Summary of Flotation for Removal of Dolomite from Phosphate Ores; 4.6 Selective Flocculation; 4.6.1 Flocculants for the Apatite/Dolomite/Silica System; 4.6.2 Factors Affecting Selectivity of Flocculation Processes
Control code
864900435
Dimensions
unknown
Edition
First edition.
Extent
1 online resource
File format
unknown
Form of item
online
Isbn
9780873353922
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)864900435

Library Locations

    • Thomas Jefferson LibraryBorrow it
      1 University Blvd, St. Louis, MO, 63121, US
      38.710138 -90.311107
Processing Feedback ...