The Resource Completely positive matrices, Abraham Berman, Naomi Shaked-Monderer
Completely positive matrices, Abraham Berman, Naomi Shaked-Monderer
Resource Information
The item Completely positive matrices, Abraham Berman, Naomi Shaked-Monderer represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri-St. Louis Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Completely positive matrices, Abraham Berman, Naomi Shaked-Monderer represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri-St. Louis Libraries.
This item is available to borrow from 1 library branch.
- Extent
- 1 online resource (ix, 206 pages)
- Isbn
- 9789812383686
- Label
- Completely positive matrices
- Title
- Completely positive matrices
- Statement of responsibility
- Abraham Berman, Naomi Shaked-Monderer
- Language
- eng
- Summary
- Annotation
- Cataloging source
- N$T
- http://library.link/vocab/creatorName
- Berman, Abraham
- Dewey number
- 512.9/434
- Illustrations
- illustrations
- Index
- index present
- LC call number
- QA188
- LC item number
- .B465 2003eb
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/relatedWorkOrContributorName
- Shaked-Monderer, Naomi
- http://library.link/vocab/subjectName
-
- Matrices
- MATHEMATICS
- Matrices
- Matrizes (álgebra)
- Summary expansion
- A real matrix is positive semidefinite if it can be decomposed as A=BBT. In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A=BBT is known as the cp-rank of A. This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp-rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined
- Label
- Completely positive matrices, Abraham Berman, Naomi Shaked-Monderer
- Antecedent source
- unknown
- Bibliography note
- Includes bibliographical references (pages 193-197) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Control code
- 263131487
- Dimensions
- unknown
- Extent
- 1 online resource (ix, 206 pages)
- File format
- unknown
- Form of item
- online
- Isbn
- 9789812383686
- Level of compression
- unknown
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations
- Quality assurance targets
- not applicable
- Reformatting quality
- unknown
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
- (OCoLC)263131487
- Label
- Completely positive matrices, Abraham Berman, Naomi Shaked-Monderer
- Antecedent source
- unknown
- Bibliography note
- Includes bibliographical references (pages 193-197) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Control code
- 263131487
- Dimensions
- unknown
- Extent
- 1 online resource (ix, 206 pages)
- File format
- unknown
- Form of item
- online
- Isbn
- 9789812383686
- Level of compression
- unknown
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations
- Quality assurance targets
- not applicable
- Reformatting quality
- unknown
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
- (OCoLC)263131487
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.umsl.edu/portal/Completely-positive-matrices-Abraham-Berman/_lKnJ1YgWZ4/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.umsl.edu/portal/Completely-positive-matrices-Abraham-Berman/_lKnJ1YgWZ4/">Completely positive matrices, Abraham Berman, Naomi Shaked-Monderer</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.umsl.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.umsl.edu/">University of Missouri-St. Louis Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Completely positive matrices, Abraham Berman, Naomi Shaked-Monderer
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.umsl.edu/portal/Completely-positive-matrices-Abraham-Berman/_lKnJ1YgWZ4/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.umsl.edu/portal/Completely-positive-matrices-Abraham-Berman/_lKnJ1YgWZ4/">Completely positive matrices, Abraham Berman, Naomi Shaked-Monderer</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.umsl.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.umsl.edu/">University of Missouri-St. Louis Libraries</a></span></span></span></span></div>