Coverart for item
The Resource Computational methods for understanding bacterial and archaeal genomes, editors, Ying Xu, J. Peter Gogarten

Computational methods for understanding bacterial and archaeal genomes, editors, Ying Xu, J. Peter Gogarten

Label
Computational methods for understanding bacterial and archaeal genomes
Title
Computational methods for understanding bacterial and archaeal genomes
Statement of responsibility
editors, Ying Xu, J. Peter Gogarten
Contributor
Subject
Genre
Language
eng
Summary
Over 500 prokaryotic genomes have been sequenced to date, and thousands more have been planned for the next few years. While these genomic sequence data provide unprecedented opportunities for biologists to study the world of prokaryotes, they also raise extremely challenging issues such as how to decode the rich information encoded in these genomes. This comprehensive volume includes a collection of cohesively written chapters on prokaryotic genomes, their organization and evolution, the information they encode, and the computational approaches needed to derive such information. A comparative
Member of
Cataloging source
N$T
Dewey number
572.860285
Illustrations
illustrations
Index
index present
LC call number
QH434
LC item number
.C66 2008eb
Literary form
non fiction
NAL call number
QH434
NAL item number
.C66 2008
Nature of contents
  • dictionaries
  • bibliography
NLM call number
QW 51 C738 2008
http://library.link/vocab/relatedWorkOrContributorDate
1960-
http://library.link/vocab/relatedWorkOrContributorName
  • Xu, Ying
  • Gogarten, J. Peter
Series statement
Series on advances in bioinformatics and computational biology,
Series volume
v. 7
http://library.link/vocab/subjectName
  • Microbial genetics
  • Bacterial genomes
  • Prokaryotes
  • Computational biology
  • Genome, Bacterial
  • Genome, Archaeal
  • Genetics, Microbial
  • Computational Biology
  • SCIENCE
  • Computational biology
  • Prokaryotes
  • Biochemistry
  • Computer science
  • Genetics (non-medical)
  • Science
Label
Computational methods for understanding bacterial and archaeal genomes, editors, Ying Xu, J. Peter Gogarten
Instantiates
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references (pages 397-466) and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Preface; CONTENTS; List of Contributors; Acknowledgments; 1. General Characteristics of Prokaryotic Genomes Jan Mr ́azek and Anne O. Summers; 1. Introduction; 1.1. The Replicon Concept and Classification of Replicons; 1.2. Physical Organization of Replicons in the Cell; 2. Overall Properties of Prokaryotic Chromosomes; 2.1. Size and Gene Content; 2.2. Why Are Prokaryotic Chromosomes Small?; 2.3. G+C Content; 2.4. Oligonucleotide Composition and Genome Signature; 2.5. Amino Acid Composition and Adaptation to Growth at High Temperatures; 3. Heterogeneity of Prokaryotic Chromosomes
  • 3.1. Intrachromosomal Variance of Nucleotide and Oligonucleotide Composition3.2. Synonymous Codon Usage; 3.3. Identification of Genomic Islands and Lateral Gene Transfer Events; 3.4. G-C Skew; 4. Repeats in Prokaryotic Genomes; 4.1. Large Repeats and Duplications; 4.2. Transposons and Insertion Sequences; 4.3. Integrons; 4.4. Chimeric Mobile Elements: Conjugative Transposons, ICEs, Plasmid-Prophages, Transposon-Prophages, Genomic Islands, and Genetic Litter; 4.5. Retrons; 4.6. Short Dispersed Repeats; 4.7. Simple Sequence Repeats; 4.8. CRISPR Repeats; 5. Further Reading; Acknowledgments
  • 2. Genes in Prokaryotic Genomes and Their Computational Prediction Rajeev K. Azad1. Introduction; 2. Inhomogeneous Markov Models; 2.1. The GeneMark Program; 3. Interpolated Markov Models; 3.1. The Glimmer Program; 3.2. Using Deleted Interpolation in Gene Prediction; 4. Hidden Markov Models; 4.1. The Forward-Backward Algorithm; 4.2. The Viterbi Algorithm; 4.3. HMM Training; 4.4. The ECOPARSE Program; 4.5. The GeneHacker Program; 4.6. HMM Versions of the GeneMark Program; 5. Fourier Transform Methods; 5.1. The GeneScan Program; 5.2. The Lengthen-Shu.e Program; 6. Self-Organizing Maps
  • 6.1. The RescueNet Program7. Directed Acyclic Graphs; 7.1. The FrameD Program; 8. Linear Discriminant Function; 8.1. The ZCURVE Program; 9. Unsupervised Model Training: The Self-Learning Algorithms; 9.1. The GeneMark-Genesis Program; 9.2. The GeneMarkS Program; 9.3. The MED Program; 10. Using Similarity Search in Gene Prediction; 10.1. The ORPHEUS Program; 10.2. The CRITICA Program; 10.3. The BDGF Program; 10.4. The EasyGene Program; 10.5. The GISMO Program; 11. Gene Start Prediction; 12. Resolving Overlapping Genes; 13. Non-coding RNA Gene Prediction; 14. Assessing Gene Prediction Programs
  • 15. Discussion16. Further Reading; Acknowledgments; 3. Evolution of the Genetic Code: Computational Methods and Inferences Greg Fournier; 1. Introduction; 1.1. The Amino Acids; 1.2. Codon Designations; 1.3. Transfer RNA; 1.4. Aminoacyl-tRNA Synthetases; 2. Major Methods and Algorithms: Variations of the Genetic Code; 2.1. Non-canonical Codes; 2.2. Selenocysteine; 2.3. Pyrrolysine; 2.4. The Sep System; 2.5. Asparagine and Glutamine; 2.6. Evolutionary Considerations; 2.7. Nanoarchaeal tRNA; 3. Major Methods and Algorithms: Models of Genetic Code Evolution; 3.1. Overview
Control code
828425182
Dimensions
unknown
Extent
1 online resource (xix, 473 pages)
File format
unknown
Form of item
online
Isbn
9781860949838
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other physical details
illustrations (some color)
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)828425182
Label
Computational methods for understanding bacterial and archaeal genomes, editors, Ying Xu, J. Peter Gogarten
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references (pages 397-466) and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Preface; CONTENTS; List of Contributors; Acknowledgments; 1. General Characteristics of Prokaryotic Genomes Jan Mr ́azek and Anne O. Summers; 1. Introduction; 1.1. The Replicon Concept and Classification of Replicons; 1.2. Physical Organization of Replicons in the Cell; 2. Overall Properties of Prokaryotic Chromosomes; 2.1. Size and Gene Content; 2.2. Why Are Prokaryotic Chromosomes Small?; 2.3. G+C Content; 2.4. Oligonucleotide Composition and Genome Signature; 2.5. Amino Acid Composition and Adaptation to Growth at High Temperatures; 3. Heterogeneity of Prokaryotic Chromosomes
  • 3.1. Intrachromosomal Variance of Nucleotide and Oligonucleotide Composition3.2. Synonymous Codon Usage; 3.3. Identification of Genomic Islands and Lateral Gene Transfer Events; 3.4. G-C Skew; 4. Repeats in Prokaryotic Genomes; 4.1. Large Repeats and Duplications; 4.2. Transposons and Insertion Sequences; 4.3. Integrons; 4.4. Chimeric Mobile Elements: Conjugative Transposons, ICEs, Plasmid-Prophages, Transposon-Prophages, Genomic Islands, and Genetic Litter; 4.5. Retrons; 4.6. Short Dispersed Repeats; 4.7. Simple Sequence Repeats; 4.8. CRISPR Repeats; 5. Further Reading; Acknowledgments
  • 2. Genes in Prokaryotic Genomes and Their Computational Prediction Rajeev K. Azad1. Introduction; 2. Inhomogeneous Markov Models; 2.1. The GeneMark Program; 3. Interpolated Markov Models; 3.1. The Glimmer Program; 3.2. Using Deleted Interpolation in Gene Prediction; 4. Hidden Markov Models; 4.1. The Forward-Backward Algorithm; 4.2. The Viterbi Algorithm; 4.3. HMM Training; 4.4. The ECOPARSE Program; 4.5. The GeneHacker Program; 4.6. HMM Versions of the GeneMark Program; 5. Fourier Transform Methods; 5.1. The GeneScan Program; 5.2. The Lengthen-Shu.e Program; 6. Self-Organizing Maps
  • 6.1. The RescueNet Program7. Directed Acyclic Graphs; 7.1. The FrameD Program; 8. Linear Discriminant Function; 8.1. The ZCURVE Program; 9. Unsupervised Model Training: The Self-Learning Algorithms; 9.1. The GeneMark-Genesis Program; 9.2. The GeneMarkS Program; 9.3. The MED Program; 10. Using Similarity Search in Gene Prediction; 10.1. The ORPHEUS Program; 10.2. The CRITICA Program; 10.3. The BDGF Program; 10.4. The EasyGene Program; 10.5. The GISMO Program; 11. Gene Start Prediction; 12. Resolving Overlapping Genes; 13. Non-coding RNA Gene Prediction; 14. Assessing Gene Prediction Programs
  • 15. Discussion16. Further Reading; Acknowledgments; 3. Evolution of the Genetic Code: Computational Methods and Inferences Greg Fournier; 1. Introduction; 1.1. The Amino Acids; 1.2. Codon Designations; 1.3. Transfer RNA; 1.4. Aminoacyl-tRNA Synthetases; 2. Major Methods and Algorithms: Variations of the Genetic Code; 2.1. Non-canonical Codes; 2.2. Selenocysteine; 2.3. Pyrrolysine; 2.4. The Sep System; 2.5. Asparagine and Glutamine; 2.6. Evolutionary Considerations; 2.7. Nanoarchaeal tRNA; 3. Major Methods and Algorithms: Models of Genetic Code Evolution; 3.1. Overview
Control code
828425182
Dimensions
unknown
Extent
1 online resource (xix, 473 pages)
File format
unknown
Form of item
online
Isbn
9781860949838
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other physical details
illustrations (some color)
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)828425182

Library Locations

    • Thomas Jefferson LibraryBorrow it
      1 University Blvd, St. Louis, MO, 63121, US
      38.710138 -90.311107
Processing Feedback ...