Coverart for item
The Resource Femtosecond biophotonics : core technology and applications, by Min Gu [and others]

Femtosecond biophotonics : core technology and applications, by Min Gu [and others]

Label
Femtosecond biophotonics : core technology and applications
Title
Femtosecond biophotonics
Title remainder
core technology and applications
Statement of responsibility
by Min Gu [and others]
Contributor
Subject
Genre
Language
eng
Summary
Covering key techniques for optical microscopy and micro-fabrication, this book provides the first detailed treatment of femtosecond laser-based biophotonics
Member of
Cataloging source
N$T
Dewey number
621.366
Illustrations
illustrations
Index
index present
LC call number
QH324.9.L37
LC item number
F45 2010eb
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
NLM call number
  • 2011 J-891
  • QH 324.9.L37
http://library.link/vocab/relatedWorkOrContributorDate
1960-
http://library.link/vocab/relatedWorkOrContributorName
Gu, Min
http://library.link/vocab/subjectName
  • Femtosecond lasers
  • Photonics
  • Photobiology
  • Microscopy, Confocal
  • Endoscopy
  • Microscopy, Fluorescence, Multiphoton
  • Optical Tweezers
  • TECHNOLOGY & ENGINEERING
  • Femtosecond lasers
  • Photobiology
  • Photonics
  • Bildgebendes Verfahren
  • Biophotonik
  • Mikroskopie
  • Molekularbiologie
Label
Femtosecond biophotonics : core technology and applications, by Min Gu [and others]
Instantiates
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Cover; Half-title; Title; Copyright; Dedication; Contents; Preface; 1 Introduction; 1.1 Femtosecond biophotonics; 1.2 Scope of the book; References; 2 Nonlinear optical microscopy; 2.1 Nonlinear optical microscopy; 2.1.1 Multi-photon fluorescence microscopy; 2.1.2 Harmonic generation microscopy; 2.1.3 Coherent anti-Stokes Raman scattering microscopy; 2.2 Two-photon fluorescence and second harmonic generation microscopy; 2.2.1 Comparison of single-photon and two-photon fluorescence imaging; 2.2.2 Reflection second harmonic generation microscopy through tissue
  • 2.3 Three-dimensional two-photon autofluorescence spectroscopy2.4 Effect of handling and fixation processes on two-photon autofluorescence spectroscopy; 2.5 Two-photon excitation fluorescence resonance energy transfer; 2.6 Two-photon fluorescence lifetime imaging; References; 3 Two-photon fluorescence microscopy through turbid media; 3.1 Two-photon fluorescence microscopy of microspheres embedded in turbid media; 3.1.1 Measurement of two-photon fluorescence images; 3.1.2 Comparison with Monte-Carlo simulation; 3.2 Limiting factors on image quality in imaging through turbid media
  • 3.3 Quantitative comparison of penetration depth between two-photon excitation and single-photon excitationReferences; 4 Fibre-optical nonlinear microscopy; 4.1 Fibre-optical confocal microscopy; 4.1.1 Image formation; 4.1.2 Milestones in fibre-optical confocal microscopy; 4.2 Two-photon fluorescence imaging systems using a single-mode optical fibre coupler; 4.2.1 Fibre-optical two-photon fluorescence microscopy; 4.2.2 Coupling efficiency and splitting ratio; 4.2.3 Spectral and temporal broadening; 4.2.4 Fluorescence axial response; 4.2.5 Three-dimensional optical transfer function analysis
  • 4.2.6 Discussion4.3 Fibre-optical second harmonic generation microscopy; 4.3.1 Coupling efficiency and splitting ratio; 4.3.2 Second-harmonic generated axial response; 4.3.3 Three-dimensional coherent transfer function analysis; 4.3.4 Polarisation anisotropy; 4.4 Towards nonlinear endoscopic imaging; 4.5 Summary; References; 5 Nonlinear optical endoscopy; 5.1 An introduction to nonlinear optical endoscopy; 5.1.1 Optical fibres and ultrashort pulse delivery; 5.1.2 Scanning mechanisms; 5.1.3 Geometries of fibre-optical nonlinear optical microscopy
  • 5.2 Nonlinear optical microscopy using double-clad PCFs5.2.1 Characterisation of double-clad PCFs; 5.2.2 Experimental arrangement; 5.2.3 Axial resolution; 5.2.4 Improvement of signal level; 5.2.5 Nonlinear optical imaging; 5.2.6 SHG polarisation anisotropy measurement; 5.3 A nonlinear optical endoscope based on a double-clad PCF and a MEMS mirror; 5.3.1 Endoscope design; 5.3.2 Axial resolution and signal level; 5.3.3 Endoscopic imaging; 5.3.4 3D tissue imaging; 5.4 Nonlinear optical microscopy using a double-clad PCF coupler; 5.4.1 A double-clad PCF coupler; 5.4.2 Experimental arrangement
Control code
650374163
Dimensions
unknown
Extent
1 online resource (xii, 232 pages)
File format
unknown
Form of item
online
Isbn
9780511727818
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other control number
9786612619953
Other physical details
illustrations
http://library.link/vocab/ext/overdrive/overdriveId
261995
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)650374163
Label
Femtosecond biophotonics : core technology and applications, by Min Gu [and others]
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Cover; Half-title; Title; Copyright; Dedication; Contents; Preface; 1 Introduction; 1.1 Femtosecond biophotonics; 1.2 Scope of the book; References; 2 Nonlinear optical microscopy; 2.1 Nonlinear optical microscopy; 2.1.1 Multi-photon fluorescence microscopy; 2.1.2 Harmonic generation microscopy; 2.1.3 Coherent anti-Stokes Raman scattering microscopy; 2.2 Two-photon fluorescence and second harmonic generation microscopy; 2.2.1 Comparison of single-photon and two-photon fluorescence imaging; 2.2.2 Reflection second harmonic generation microscopy through tissue
  • 2.3 Three-dimensional two-photon autofluorescence spectroscopy2.4 Effect of handling and fixation processes on two-photon autofluorescence spectroscopy; 2.5 Two-photon excitation fluorescence resonance energy transfer; 2.6 Two-photon fluorescence lifetime imaging; References; 3 Two-photon fluorescence microscopy through turbid media; 3.1 Two-photon fluorescence microscopy of microspheres embedded in turbid media; 3.1.1 Measurement of two-photon fluorescence images; 3.1.2 Comparison with Monte-Carlo simulation; 3.2 Limiting factors on image quality in imaging through turbid media
  • 3.3 Quantitative comparison of penetration depth between two-photon excitation and single-photon excitationReferences; 4 Fibre-optical nonlinear microscopy; 4.1 Fibre-optical confocal microscopy; 4.1.1 Image formation; 4.1.2 Milestones in fibre-optical confocal microscopy; 4.2 Two-photon fluorescence imaging systems using a single-mode optical fibre coupler; 4.2.1 Fibre-optical two-photon fluorescence microscopy; 4.2.2 Coupling efficiency and splitting ratio; 4.2.3 Spectral and temporal broadening; 4.2.4 Fluorescence axial response; 4.2.5 Three-dimensional optical transfer function analysis
  • 4.2.6 Discussion4.3 Fibre-optical second harmonic generation microscopy; 4.3.1 Coupling efficiency and splitting ratio; 4.3.2 Second-harmonic generated axial response; 4.3.3 Three-dimensional coherent transfer function analysis; 4.3.4 Polarisation anisotropy; 4.4 Towards nonlinear endoscopic imaging; 4.5 Summary; References; 5 Nonlinear optical endoscopy; 5.1 An introduction to nonlinear optical endoscopy; 5.1.1 Optical fibres and ultrashort pulse delivery; 5.1.2 Scanning mechanisms; 5.1.3 Geometries of fibre-optical nonlinear optical microscopy
  • 5.2 Nonlinear optical microscopy using double-clad PCFs5.2.1 Characterisation of double-clad PCFs; 5.2.2 Experimental arrangement; 5.2.3 Axial resolution; 5.2.4 Improvement of signal level; 5.2.5 Nonlinear optical imaging; 5.2.6 SHG polarisation anisotropy measurement; 5.3 A nonlinear optical endoscope based on a double-clad PCF and a MEMS mirror; 5.3.1 Endoscope design; 5.3.2 Axial resolution and signal level; 5.3.3 Endoscopic imaging; 5.3.4 3D tissue imaging; 5.4 Nonlinear optical microscopy using a double-clad PCF coupler; 5.4.1 A double-clad PCF coupler; 5.4.2 Experimental arrangement
Control code
650374163
Dimensions
unknown
Extent
1 online resource (xii, 232 pages)
File format
unknown
Form of item
online
Isbn
9780511727818
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other control number
9786612619953
Other physical details
illustrations
http://library.link/vocab/ext/overdrive/overdriveId
261995
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)650374163

Library Locations

    • Thomas Jefferson LibraryBorrow it
      1 University Blvd, St. Louis, MO, 63121, US
      38.710138 -90.311107
Processing Feedback ...