Coverart for item
The Resource Global attractors in abstract parabolic problems, Jan W. Cholewa & Tomasz Dlotko ; in cooperation with Nathaniel Chafee

Global attractors in abstract parabolic problems, Jan W. Cholewa & Tomasz Dlotko ; in cooperation with Nathaniel Chafee

Label
Global attractors in abstract parabolic problems
Title
Global attractors in abstract parabolic problems
Statement of responsibility
Jan W. Cholewa & Tomasz Dlotko ; in cooperation with Nathaniel Chafee
Creator
Contributor
Subject
Language
eng
Summary
This book investigates the asymptotic behaviour of dynamical systems corresponding to parabolic equations
Member of
Cataloging source
N$T
http://library.link/vocab/creatorName
Cholewa, Jan W
Dewey number
514/.74
Index
index present
LC call number
QA614.813
LC item number
.C48 2000eb
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
  • Dlotko, Tomasz
  • London Mathematical Society
Series statement
London Mathematical Society lecture note series
Series volume
278
http://library.link/vocab/subjectName
  • Attractors (Mathematics)
  • Differential equations, Parabolic
  • MATHEMATICS
  • Attractors (Mathematics)
  • Differential equations, Parabolic
  • Parabolische differentiaalvergelijkingen
  • Dynamische systemen
  • Attracteurs (Mathématiques)
  • Equations différentielles paraboliques
Label
Global attractors in abstract parabolic problems, Jan W. Cholewa & Tomasz Dlotko ; in cooperation with Nathaniel Chafee
Instantiates
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references (pages 225-233) and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
Ch. 1. Preliminary Concepts -- 1.1. Elements of stability theory -- 1.2. Inequalities. Elliptic operators -- 1.3. Sectorial operators -- Ch. 2. The abstract Cauchy problem -- 2.1. Evolutionary equation with sectorial operator -- 2.2. Variation of constants formula -- 2.3. Local X[superscript [alpha]] solutions -- Ch. 3. Semigroups of global solutions -- 3.1. Generation of nonlinear semigroups -- 3.2. Smoothing properties of the semigroup -- 3.3. Compactness results -- Ch. 4. Construction of the global attractor -- 4.1. Dissipativeness of {T(t)} -- 4.2. Existence of a global attractor -- abstract setting -- 4.3. Global solvability and attractors in X[superscript [alpha]] scales -- Ch. 5. Application of abstract results to parabolic equations -- 5.1. Formulation of the problem -- 5.2. Global solutions via partial information -- 5.3. Existence of a global attractor -- Ch. 6. Examples of global attractors in parabolic problems -- 6.1. Introductory example -- 6.2. Single second order dissipative equation -- 6.3. The method of invariant regions -- 6.4. The Cahn-Hilliard pattern formation model -- 6.5. Burgers equation -- 6.6. Navier-Stokes equations in low dimension (n [less than or equal to] 2) -- 6.7. Cauchy problems in the half-space R[superscript +] x R[superscript n] -- Ch. 7. Backward uniqueness and regularity of solutions -- 7.1. Invertible processes -- 7.2. X[superscript s+[alpha]] solutions; s [greater than or equal to] 0, [alpha][Epsilon](0,1) -- Ch. 8. Extensions -- 8.1. Non-Lipschitz nonlinearities -- 8.2. Application of the principle of linearized stability -- 8.3. The n-dimensional Navier-Stokes system -- 8.4. Parabolic problems in Holder spaces -- 8.5. Dissipativeness in Holder spaces -- 8.6. Equations with monotone operators -- Ch. 9. Appendix -- 9.1. Notation, definitions and conventions -- 9.2. Abstract version of the maximum principle -- 9.3. L[superscript [infinity]]([Omega]) estimate for second order problems -- 9.4. Comparison of X[superscript [alpha]] solution with other types of solutions -- 9.5. Final remarks
Control code
836869289
Dimensions
unknown
Extent
1 online resource (xii, 235 pages)
File format
unknown
Form of item
online
Isbn
9781107363120
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)836869289
Label
Global attractors in abstract parabolic problems, Jan W. Cholewa & Tomasz Dlotko ; in cooperation with Nathaniel Chafee
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references (pages 225-233) and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
Ch. 1. Preliminary Concepts -- 1.1. Elements of stability theory -- 1.2. Inequalities. Elliptic operators -- 1.3. Sectorial operators -- Ch. 2. The abstract Cauchy problem -- 2.1. Evolutionary equation with sectorial operator -- 2.2. Variation of constants formula -- 2.3. Local X[superscript [alpha]] solutions -- Ch. 3. Semigroups of global solutions -- 3.1. Generation of nonlinear semigroups -- 3.2. Smoothing properties of the semigroup -- 3.3. Compactness results -- Ch. 4. Construction of the global attractor -- 4.1. Dissipativeness of {T(t)} -- 4.2. Existence of a global attractor -- abstract setting -- 4.3. Global solvability and attractors in X[superscript [alpha]] scales -- Ch. 5. Application of abstract results to parabolic equations -- 5.1. Formulation of the problem -- 5.2. Global solutions via partial information -- 5.3. Existence of a global attractor -- Ch. 6. Examples of global attractors in parabolic problems -- 6.1. Introductory example -- 6.2. Single second order dissipative equation -- 6.3. The method of invariant regions -- 6.4. The Cahn-Hilliard pattern formation model -- 6.5. Burgers equation -- 6.6. Navier-Stokes equations in low dimension (n [less than or equal to] 2) -- 6.7. Cauchy problems in the half-space R[superscript +] x R[superscript n] -- Ch. 7. Backward uniqueness and regularity of solutions -- 7.1. Invertible processes -- 7.2. X[superscript s+[alpha]] solutions; s [greater than or equal to] 0, [alpha][Epsilon](0,1) -- Ch. 8. Extensions -- 8.1. Non-Lipschitz nonlinearities -- 8.2. Application of the principle of linearized stability -- 8.3. The n-dimensional Navier-Stokes system -- 8.4. Parabolic problems in Holder spaces -- 8.5. Dissipativeness in Holder spaces -- 8.6. Equations with monotone operators -- Ch. 9. Appendix -- 9.1. Notation, definitions and conventions -- 9.2. Abstract version of the maximum principle -- 9.3. L[superscript [infinity]]([Omega]) estimate for second order problems -- 9.4. Comparison of X[superscript [alpha]] solution with other types of solutions -- 9.5. Final remarks
Control code
836869289
Dimensions
unknown
Extent
1 online resource (xii, 235 pages)
File format
unknown
Form of item
online
Isbn
9781107363120
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)836869289

Library Locations

    • Thomas Jefferson LibraryBorrow it
      1 University Blvd, St. Louis, MO, 63121, US
      38.710138 -90.311107
Processing Feedback ...