Coverart for item
The Resource Magnetism in condensed matter, Stephen Blundell

Magnetism in condensed matter, Stephen Blundell

Label
Magnetism in condensed matter
Title
Magnetism in condensed matter
Statement of responsibility
Stephen Blundell
Creator
Subject
Genre
Language
eng
Summary
An understanding of the quantum mechanical nature of magnetism has led to the development of new magnetic materials which are used as permanent magnets, sensors, and information storage. Behind these practical applications lie a range of fundamental ideas, including symmetry breaking, order parameters, excitations, frustration, and reduced dimensionality. This superb new textbook presents a logical account of these ideas, staring from basic concepts in electromagnetsim and quantum mechanics. It outlines the origin of magnetic moments in atoms and how these moments can be affected by their local environment inside a crystal. The different types of interactions which can be present between magnetic moments are described. The final chapters of the book are devoted to the magnetic properties of metals, and to the complex behaviour which can occur when competing magnetic interactions are present and/or the system has a reduced dimensionality. Throughout the text, the theoretical principles are applied to real systems. There is substantial discussion of experimental techniques and current research topics.; The book is copiously illustrated and contains detailed appendices which cover the fundamental principles
Member of
Cataloging source
N$T
http://library.link/vocab/creatorName
Blundell, Stephen
Dewey number
530.4/12
Illustrations
illustrations
Index
index present
LC call number
QC173.458.M33
LC item number
B58 2001eb
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
Series statement
Oxford master series in condensed matter physics
http://library.link/vocab/subjectName
  • Condensed matter
  • SCIENCE
  • Condensed matter
  • Magnetisme (fysica)
  • Magnetische stoffen
  • Vastestoffysica
  • Festkörper
  • Magnetismus
  • Matéria condensada
Label
Magnetism in condensed matter, Stephen Blundell
Instantiates
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Intro; Contents; 1 Introduction; 1.1 Magnetic moments; 1.1.1 Magnetic moments and angular momentum; 1.1.2 Precession; 1.1.3 The Bohr magneton; 1.1.4 Magnetization and field; 1.2 Classical mechanics and magnetic moments; 1.2.1 Canonical momentum; 1.2.2 The Bohr-van Leeuwen theorem; 1.3 Quantum mechanics of spin; 1.3.1 Orbital and spin angular momentum; 1.3.2 Pauli spin matrices and spinors; 1.3.3 Raising and lowering operators; 1.3.4 The coupling of two spins; 2 Isolated magnetic moments; 2.1 An atom in a magnetic field; 2.2 Magnetic susceptibility; 2.3 Diamagnetism; 2.4 Paramagnetism
  • 2.4.1 Semiclassical treatment of paramagnetism2.4.2 Paramagnetism for J = ư; 2.4.3 The Brillouin function; 2.4.4 Van Vleck paramagnetism; 2.5 The ground state of an ion and Hund's rules; 2.5.1 Fine structure; 2.5.2 Hund's rules; 2.5.3 L-S and j-j coupling; 2.6 Adiabatic demagnetization; 2.7 Nuclear spins; 2.8 Hyperfine structure; 3 Environments; 3.1 Crystal fields; 3.1.1 Origin of crystal fields; 3.1.2 Orbital quenching; 3.1.3 The Jahn-Teller effect; 3.2 Magnetic resonance techniques; 3.2.1 Nuclear magnetic resonance; 3.2.2 Electron spin resonance; 3.2.3 Mössbauer spectroscopy
  • 3.2.4 Muon-spin rotation4 Interactions; 4.1 Magnetic dipolar interaction; 4.2 Exchange interaction; 4.2.1 Origin of exchange; 4.2.2 Direct exchange; 4.2.3 Indirect exchange in ionic solids: superexchange; 4.2.4 Indirect exchange in metals; 4.2.5 Double exchange; 4.2.6 Anisotropic exchange interaction; 4.2.7 Continuum approximation; 5 Order and magnetic structures; 5.1 Ferromagnetism; 5.1.1 The Weiss model of a ferromagnet; 5.1.2 Magnetic susceptibility; 5.1.3 The effect of a magnetic field; 5.1.4 Origin of the molecular field; 5.2 Antiferromagnetism; 5.2.1 Weiss model of an antiferromagnet
  • 5.2.2 Magnetic susceptibility5.2.3 The effect of a strong magnetic field; 5.2.4 Types of antiferromagnetic order; 5.3 Ferrimagnetism; 5.4 Helical order; 5.5 Spin glasses; 5.6 Nuclear ordering; 5.7 Measurement of magnetic order; 5.7.1 Magnetization and magnetic susceptibility; 5.7.2 Neutron scattering; 5.7.3 Other techniques; 6 Order and broken symmetry; 6.1 Broken symmetry; 6.2 Models; 6.2.1 Landau theory of ferromagnetism; 6.2.2 Heisenberg and Ising models; 6.2.3 The one-dimensional Ising model (D = 1, d = 1); 6.2.4 The two-dimensional Ising model (D = 1, d = 2)
  • 6.3 Consequences of broken symmetry6.4 Phase transitions; 6.5 Rigidity; 6.6 Excitations; 6.6.1 Magnons; 6.6.2 The Bloch T[sup(3/2)] law; 6.6.3 The Mermin-Wagner-Berezinskii theorem; 6.6.4 Measurement of spin waves; 6.7 Domains; 6.7.1 Domain walls; 6.7.2 Magnetocrystalline anisotropy; 6.7.3 Domain wall width; 6.7.4 Domain formation; 6.7.5 Magnetization processes; 6.7.6 Domain wall observation; 6.7.7 Small magnetic particles; 6.7.8 The Stoner-Wohlfarth model; 6.7.9 Soft and hard materials; 7 Magnetism in metals; 7.1 The free electron model; 7.2 Pauli paramagnetism; 7.2.1 Elementary derivation
Control code
53956469
Dimensions
unknown
Extent
1 online resource (xii, 238 pages)
File format
unknown
Form of item
online
Isbn
9781280375132
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other physical details
illustrations.
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)53956469
Label
Magnetism in condensed matter, Stephen Blundell
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Intro; Contents; 1 Introduction; 1.1 Magnetic moments; 1.1.1 Magnetic moments and angular momentum; 1.1.2 Precession; 1.1.3 The Bohr magneton; 1.1.4 Magnetization and field; 1.2 Classical mechanics and magnetic moments; 1.2.1 Canonical momentum; 1.2.2 The Bohr-van Leeuwen theorem; 1.3 Quantum mechanics of spin; 1.3.1 Orbital and spin angular momentum; 1.3.2 Pauli spin matrices and spinors; 1.3.3 Raising and lowering operators; 1.3.4 The coupling of two spins; 2 Isolated magnetic moments; 2.1 An atom in a magnetic field; 2.2 Magnetic susceptibility; 2.3 Diamagnetism; 2.4 Paramagnetism
  • 2.4.1 Semiclassical treatment of paramagnetism2.4.2 Paramagnetism for J = ư; 2.4.3 The Brillouin function; 2.4.4 Van Vleck paramagnetism; 2.5 The ground state of an ion and Hund's rules; 2.5.1 Fine structure; 2.5.2 Hund's rules; 2.5.3 L-S and j-j coupling; 2.6 Adiabatic demagnetization; 2.7 Nuclear spins; 2.8 Hyperfine structure; 3 Environments; 3.1 Crystal fields; 3.1.1 Origin of crystal fields; 3.1.2 Orbital quenching; 3.1.3 The Jahn-Teller effect; 3.2 Magnetic resonance techniques; 3.2.1 Nuclear magnetic resonance; 3.2.2 Electron spin resonance; 3.2.3 Mössbauer spectroscopy
  • 3.2.4 Muon-spin rotation4 Interactions; 4.1 Magnetic dipolar interaction; 4.2 Exchange interaction; 4.2.1 Origin of exchange; 4.2.2 Direct exchange; 4.2.3 Indirect exchange in ionic solids: superexchange; 4.2.4 Indirect exchange in metals; 4.2.5 Double exchange; 4.2.6 Anisotropic exchange interaction; 4.2.7 Continuum approximation; 5 Order and magnetic structures; 5.1 Ferromagnetism; 5.1.1 The Weiss model of a ferromagnet; 5.1.2 Magnetic susceptibility; 5.1.3 The effect of a magnetic field; 5.1.4 Origin of the molecular field; 5.2 Antiferromagnetism; 5.2.1 Weiss model of an antiferromagnet
  • 5.2.2 Magnetic susceptibility5.2.3 The effect of a strong magnetic field; 5.2.4 Types of antiferromagnetic order; 5.3 Ferrimagnetism; 5.4 Helical order; 5.5 Spin glasses; 5.6 Nuclear ordering; 5.7 Measurement of magnetic order; 5.7.1 Magnetization and magnetic susceptibility; 5.7.2 Neutron scattering; 5.7.3 Other techniques; 6 Order and broken symmetry; 6.1 Broken symmetry; 6.2 Models; 6.2.1 Landau theory of ferromagnetism; 6.2.2 Heisenberg and Ising models; 6.2.3 The one-dimensional Ising model (D = 1, d = 1); 6.2.4 The two-dimensional Ising model (D = 1, d = 2)
  • 6.3 Consequences of broken symmetry6.4 Phase transitions; 6.5 Rigidity; 6.6 Excitations; 6.6.1 Magnons; 6.6.2 The Bloch T[sup(3/2)] law; 6.6.3 The Mermin-Wagner-Berezinskii theorem; 6.6.4 Measurement of spin waves; 6.7 Domains; 6.7.1 Domain walls; 6.7.2 Magnetocrystalline anisotropy; 6.7.3 Domain wall width; 6.7.4 Domain formation; 6.7.5 Magnetization processes; 6.7.6 Domain wall observation; 6.7.7 Small magnetic particles; 6.7.8 The Stoner-Wohlfarth model; 6.7.9 Soft and hard materials; 7 Magnetism in metals; 7.1 The free electron model; 7.2 Pauli paramagnetism; 7.2.1 Elementary derivation
Control code
53956469
Dimensions
unknown
Extent
1 online resource (xii, 238 pages)
File format
unknown
Form of item
online
Isbn
9781280375132
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other physical details
illustrations.
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)53956469

Library Locations

    • Thomas Jefferson LibraryBorrow it
      1 University Blvd, St. Louis, MO, 63121, US
      38.710138 -90.311107
Processing Feedback ...