The Resource Magnetism in condensed matter, Stephen Blundell
Magnetism in condensed matter, Stephen Blundell
Resource Information
The item Magnetism in condensed matter, Stephen Blundell represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri-St. Louis Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Magnetism in condensed matter, Stephen Blundell represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Missouri-St. Louis Libraries.
This item is available to borrow from 1 library branch.
- Summary
- An understanding of the quantum mechanical nature of magnetism has led to the development of new magnetic materials which are used as permanent magnets, sensors, and information storage. Behind these practical applications lie a range of fundamental ideas, including symmetry breaking, order parameters, excitations, frustration, and reduced dimensionality. This superb new textbook presents a logical account of these ideas, staring from basic concepts in electromagnetsim and quantum mechanics. It outlines the origin of magnetic moments in atoms and how these moments can be affected by their local environment inside a crystal. The different types of interactions which can be present between magnetic moments are described. The final chapters of the book are devoted to the magnetic properties of metals, and to the complex behaviour which can occur when competing magnetic interactions are present and/or the system has a reduced dimensionality. Throughout the text, the theoretical principles are applied to real systems. There is substantial discussion of experimental techniques and current research topics.; The book is copiously illustrated and contains detailed appendices which cover the fundamental principles
- Language
- eng
- Extent
- 1 online resource (xii, 238 pages)
- Contents
-
- Intro; Contents; 1 Introduction; 1.1 Magnetic moments; 1.1.1 Magnetic moments and angular momentum; 1.1.2 Precession; 1.1.3 The Bohr magneton; 1.1.4 Magnetization and field; 1.2 Classical mechanics and magnetic moments; 1.2.1 Canonical momentum; 1.2.2 The Bohr-van Leeuwen theorem; 1.3 Quantum mechanics of spin; 1.3.1 Orbital and spin angular momentum; 1.3.2 Pauli spin matrices and spinors; 1.3.3 Raising and lowering operators; 1.3.4 The coupling of two spins; 2 Isolated magnetic moments; 2.1 An atom in a magnetic field; 2.2 Magnetic susceptibility; 2.3 Diamagnetism; 2.4 Paramagnetism
- 2.4.1 Semiclassical treatment of paramagnetism2.4.2 Paramagnetism for J = ư; 2.4.3 The Brillouin function; 2.4.4 Van Vleck paramagnetism; 2.5 The ground state of an ion and Hund's rules; 2.5.1 Fine structure; 2.5.2 Hund's rules; 2.5.3 L-S and j-j coupling; 2.6 Adiabatic demagnetization; 2.7 Nuclear spins; 2.8 Hyperfine structure; 3 Environments; 3.1 Crystal fields; 3.1.1 Origin of crystal fields; 3.1.2 Orbital quenching; 3.1.3 The Jahn-Teller effect; 3.2 Magnetic resonance techniques; 3.2.1 Nuclear magnetic resonance; 3.2.2 Electron spin resonance; 3.2.3 Mössbauer spectroscopy
- 3.2.4 Muon-spin rotation4 Interactions; 4.1 Magnetic dipolar interaction; 4.2 Exchange interaction; 4.2.1 Origin of exchange; 4.2.2 Direct exchange; 4.2.3 Indirect exchange in ionic solids: superexchange; 4.2.4 Indirect exchange in metals; 4.2.5 Double exchange; 4.2.6 Anisotropic exchange interaction; 4.2.7 Continuum approximation; 5 Order and magnetic structures; 5.1 Ferromagnetism; 5.1.1 The Weiss model of a ferromagnet; 5.1.2 Magnetic susceptibility; 5.1.3 The effect of a magnetic field; 5.1.4 Origin of the molecular field; 5.2 Antiferromagnetism; 5.2.1 Weiss model of an antiferromagnet
- 5.2.2 Magnetic susceptibility5.2.3 The effect of a strong magnetic field; 5.2.4 Types of antiferromagnetic order; 5.3 Ferrimagnetism; 5.4 Helical order; 5.5 Spin glasses; 5.6 Nuclear ordering; 5.7 Measurement of magnetic order; 5.7.1 Magnetization and magnetic susceptibility; 5.7.2 Neutron scattering; 5.7.3 Other techniques; 6 Order and broken symmetry; 6.1 Broken symmetry; 6.2 Models; 6.2.1 Landau theory of ferromagnetism; 6.2.2 Heisenberg and Ising models; 6.2.3 The one-dimensional Ising model (D = 1, d = 1); 6.2.4 The two-dimensional Ising model (D = 1, d = 2)
- 6.3 Consequences of broken symmetry6.4 Phase transitions; 6.5 Rigidity; 6.6 Excitations; 6.6.1 Magnons; 6.6.2 The Bloch T[sup(3/2)] law; 6.6.3 The Mermin-Wagner-Berezinskii theorem; 6.6.4 Measurement of spin waves; 6.7 Domains; 6.7.1 Domain walls; 6.7.2 Magnetocrystalline anisotropy; 6.7.3 Domain wall width; 6.7.4 Domain formation; 6.7.5 Magnetization processes; 6.7.6 Domain wall observation; 6.7.7 Small magnetic particles; 6.7.8 The Stoner-Wohlfarth model; 6.7.9 Soft and hard materials; 7 Magnetism in metals; 7.1 The free electron model; 7.2 Pauli paramagnetism; 7.2.1 Elementary derivation
- Isbn
- 9781280375132
- Label
- Magnetism in condensed matter
- Title
- Magnetism in condensed matter
- Statement of responsibility
- Stephen Blundell
- Language
- eng
- Summary
- An understanding of the quantum mechanical nature of magnetism has led to the development of new magnetic materials which are used as permanent magnets, sensors, and information storage. Behind these practical applications lie a range of fundamental ideas, including symmetry breaking, order parameters, excitations, frustration, and reduced dimensionality. This superb new textbook presents a logical account of these ideas, staring from basic concepts in electromagnetsim and quantum mechanics. It outlines the origin of magnetic moments in atoms and how these moments can be affected by their local environment inside a crystal. The different types of interactions which can be present between magnetic moments are described. The final chapters of the book are devoted to the magnetic properties of metals, and to the complex behaviour which can occur when competing magnetic interactions are present and/or the system has a reduced dimensionality. Throughout the text, the theoretical principles are applied to real systems. There is substantial discussion of experimental techniques and current research topics.; The book is copiously illustrated and contains detailed appendices which cover the fundamental principles
- Cataloging source
- N$T
- http://library.link/vocab/creatorName
- Blundell, Stephen
- Dewey number
- 530.4/12
- Illustrations
- illustrations
- Index
- index present
- LC call number
- QC173.458.M33
- LC item number
- B58 2001eb
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- Series statement
- Oxford master series in condensed matter physics
- http://library.link/vocab/subjectName
-
- Condensed matter
- SCIENCE
- Condensed matter
- Magnetisme (fysica)
- Magnetische stoffen
- Vastestoffysica
- Festkörper
- Magnetismus
- Matéria condensada
- Label
- Magnetism in condensed matter, Stephen Blundell
- Antecedent source
- unknown
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Intro; Contents; 1 Introduction; 1.1 Magnetic moments; 1.1.1 Magnetic moments and angular momentum; 1.1.2 Precession; 1.1.3 The Bohr magneton; 1.1.4 Magnetization and field; 1.2 Classical mechanics and magnetic moments; 1.2.1 Canonical momentum; 1.2.2 The Bohr-van Leeuwen theorem; 1.3 Quantum mechanics of spin; 1.3.1 Orbital and spin angular momentum; 1.3.2 Pauli spin matrices and spinors; 1.3.3 Raising and lowering operators; 1.3.4 The coupling of two spins; 2 Isolated magnetic moments; 2.1 An atom in a magnetic field; 2.2 Magnetic susceptibility; 2.3 Diamagnetism; 2.4 Paramagnetism
- 2.4.1 Semiclassical treatment of paramagnetism2.4.2 Paramagnetism for J = ư; 2.4.3 The Brillouin function; 2.4.4 Van Vleck paramagnetism; 2.5 The ground state of an ion and Hund's rules; 2.5.1 Fine structure; 2.5.2 Hund's rules; 2.5.3 L-S and j-j coupling; 2.6 Adiabatic demagnetization; 2.7 Nuclear spins; 2.8 Hyperfine structure; 3 Environments; 3.1 Crystal fields; 3.1.1 Origin of crystal fields; 3.1.2 Orbital quenching; 3.1.3 The Jahn-Teller effect; 3.2 Magnetic resonance techniques; 3.2.1 Nuclear magnetic resonance; 3.2.2 Electron spin resonance; 3.2.3 Mössbauer spectroscopy
- 3.2.4 Muon-spin rotation4 Interactions; 4.1 Magnetic dipolar interaction; 4.2 Exchange interaction; 4.2.1 Origin of exchange; 4.2.2 Direct exchange; 4.2.3 Indirect exchange in ionic solids: superexchange; 4.2.4 Indirect exchange in metals; 4.2.5 Double exchange; 4.2.6 Anisotropic exchange interaction; 4.2.7 Continuum approximation; 5 Order and magnetic structures; 5.1 Ferromagnetism; 5.1.1 The Weiss model of a ferromagnet; 5.1.2 Magnetic susceptibility; 5.1.3 The effect of a magnetic field; 5.1.4 Origin of the molecular field; 5.2 Antiferromagnetism; 5.2.1 Weiss model of an antiferromagnet
- 5.2.2 Magnetic susceptibility5.2.3 The effect of a strong magnetic field; 5.2.4 Types of antiferromagnetic order; 5.3 Ferrimagnetism; 5.4 Helical order; 5.5 Spin glasses; 5.6 Nuclear ordering; 5.7 Measurement of magnetic order; 5.7.1 Magnetization and magnetic susceptibility; 5.7.2 Neutron scattering; 5.7.3 Other techniques; 6 Order and broken symmetry; 6.1 Broken symmetry; 6.2 Models; 6.2.1 Landau theory of ferromagnetism; 6.2.2 Heisenberg and Ising models; 6.2.3 The one-dimensional Ising model (D = 1, d = 1); 6.2.4 The two-dimensional Ising model (D = 1, d = 2)
- 6.3 Consequences of broken symmetry6.4 Phase transitions; 6.5 Rigidity; 6.6 Excitations; 6.6.1 Magnons; 6.6.2 The Bloch T[sup(3/2)] law; 6.6.3 The Mermin-Wagner-Berezinskii theorem; 6.6.4 Measurement of spin waves; 6.7 Domains; 6.7.1 Domain walls; 6.7.2 Magnetocrystalline anisotropy; 6.7.3 Domain wall width; 6.7.4 Domain formation; 6.7.5 Magnetization processes; 6.7.6 Domain wall observation; 6.7.7 Small magnetic particles; 6.7.8 The Stoner-Wohlfarth model; 6.7.9 Soft and hard materials; 7 Magnetism in metals; 7.1 The free electron model; 7.2 Pauli paramagnetism; 7.2.1 Elementary derivation
- Control code
- 53956469
- Dimensions
- unknown
- Extent
- 1 online resource (xii, 238 pages)
- File format
- unknown
- Form of item
- online
- Isbn
- 9781280375132
- Level of compression
- unknown
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations.
- Quality assurance targets
- not applicable
- Reformatting quality
- unknown
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
- (OCoLC)53956469
- Label
- Magnetism in condensed matter, Stephen Blundell
- Antecedent source
- unknown
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Intro; Contents; 1 Introduction; 1.1 Magnetic moments; 1.1.1 Magnetic moments and angular momentum; 1.1.2 Precession; 1.1.3 The Bohr magneton; 1.1.4 Magnetization and field; 1.2 Classical mechanics and magnetic moments; 1.2.1 Canonical momentum; 1.2.2 The Bohr-van Leeuwen theorem; 1.3 Quantum mechanics of spin; 1.3.1 Orbital and spin angular momentum; 1.3.2 Pauli spin matrices and spinors; 1.3.3 Raising and lowering operators; 1.3.4 The coupling of two spins; 2 Isolated magnetic moments; 2.1 An atom in a magnetic field; 2.2 Magnetic susceptibility; 2.3 Diamagnetism; 2.4 Paramagnetism
- 2.4.1 Semiclassical treatment of paramagnetism2.4.2 Paramagnetism for J = ư; 2.4.3 The Brillouin function; 2.4.4 Van Vleck paramagnetism; 2.5 The ground state of an ion and Hund's rules; 2.5.1 Fine structure; 2.5.2 Hund's rules; 2.5.3 L-S and j-j coupling; 2.6 Adiabatic demagnetization; 2.7 Nuclear spins; 2.8 Hyperfine structure; 3 Environments; 3.1 Crystal fields; 3.1.1 Origin of crystal fields; 3.1.2 Orbital quenching; 3.1.3 The Jahn-Teller effect; 3.2 Magnetic resonance techniques; 3.2.1 Nuclear magnetic resonance; 3.2.2 Electron spin resonance; 3.2.3 Mössbauer spectroscopy
- 3.2.4 Muon-spin rotation4 Interactions; 4.1 Magnetic dipolar interaction; 4.2 Exchange interaction; 4.2.1 Origin of exchange; 4.2.2 Direct exchange; 4.2.3 Indirect exchange in ionic solids: superexchange; 4.2.4 Indirect exchange in metals; 4.2.5 Double exchange; 4.2.6 Anisotropic exchange interaction; 4.2.7 Continuum approximation; 5 Order and magnetic structures; 5.1 Ferromagnetism; 5.1.1 The Weiss model of a ferromagnet; 5.1.2 Magnetic susceptibility; 5.1.3 The effect of a magnetic field; 5.1.4 Origin of the molecular field; 5.2 Antiferromagnetism; 5.2.1 Weiss model of an antiferromagnet
- 5.2.2 Magnetic susceptibility5.2.3 The effect of a strong magnetic field; 5.2.4 Types of antiferromagnetic order; 5.3 Ferrimagnetism; 5.4 Helical order; 5.5 Spin glasses; 5.6 Nuclear ordering; 5.7 Measurement of magnetic order; 5.7.1 Magnetization and magnetic susceptibility; 5.7.2 Neutron scattering; 5.7.3 Other techniques; 6 Order and broken symmetry; 6.1 Broken symmetry; 6.2 Models; 6.2.1 Landau theory of ferromagnetism; 6.2.2 Heisenberg and Ising models; 6.2.3 The one-dimensional Ising model (D = 1, d = 1); 6.2.4 The two-dimensional Ising model (D = 1, d = 2)
- 6.3 Consequences of broken symmetry6.4 Phase transitions; 6.5 Rigidity; 6.6 Excitations; 6.6.1 Magnons; 6.6.2 The Bloch T[sup(3/2)] law; 6.6.3 The Mermin-Wagner-Berezinskii theorem; 6.6.4 Measurement of spin waves; 6.7 Domains; 6.7.1 Domain walls; 6.7.2 Magnetocrystalline anisotropy; 6.7.3 Domain wall width; 6.7.4 Domain formation; 6.7.5 Magnetization processes; 6.7.6 Domain wall observation; 6.7.7 Small magnetic particles; 6.7.8 The Stoner-Wohlfarth model; 6.7.9 Soft and hard materials; 7 Magnetism in metals; 7.1 The free electron model; 7.2 Pauli paramagnetism; 7.2.1 Elementary derivation
- Control code
- 53956469
- Dimensions
- unknown
- Extent
- 1 online resource (xii, 238 pages)
- File format
- unknown
- Form of item
- online
- Isbn
- 9781280375132
- Level of compression
- unknown
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations.
- Quality assurance targets
- not applicable
- Reformatting quality
- unknown
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
- (OCoLC)53956469
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.umsl.edu/portal/Magnetism-in-condensed-matter-Stephen/t0i463W8kbc/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.umsl.edu/portal/Magnetism-in-condensed-matter-Stephen/t0i463W8kbc/">Magnetism in condensed matter, Stephen Blundell</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.umsl.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.umsl.edu/">University of Missouri-St. Louis Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Magnetism in condensed matter, Stephen Blundell
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.umsl.edu/portal/Magnetism-in-condensed-matter-Stephen/t0i463W8kbc/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.umsl.edu/portal/Magnetism-in-condensed-matter-Stephen/t0i463W8kbc/">Magnetism in condensed matter, Stephen Blundell</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.umsl.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.umsl.edu/">University of Missouri-St. Louis Libraries</a></span></span></span></span></div>