Coverart for item
The Resource Mathematics for 3D game programming and computer graphics, Eric Lengyel

Mathematics for 3D game programming and computer graphics, Eric Lengyel

Label
Mathematics for 3D game programming and computer graphics
Title
Mathematics for 3D game programming and computer graphics
Statement of responsibility
Eric Lengyel
Creator
Subject
Genre
Language
eng
Summary
Mathematics for 3D game programming and computer graphics, third edition, illustrates the mathematical concepts that a game developer needs to develop 3D computer graphics and game engines at the professional level
Cataloging source
N$T
http://library.link/vocab/creatorName
Lengyel, Eric
Dewey number
794.8/16693
Illustrations
illustrations
Index
index present
LC call number
QA76.76.C672
LC item number
L46 2012eb
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/subjectName
  • Computer games
  • Three-dimensional display systems
  • Computer graphics
  • COMPUTERS
  • Computer games
  • Computer graphics
  • Three-dimensional display systems
  • Computergrafik
  • Computerspiel
  • Programmierung
Label
Mathematics for 3D game programming and computer graphics, Eric Lengyel
Instantiates
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Rasterization and Fragment Operations
  • 5.4.1.
  • Depth Interpolation
  • 5.4.2.
  • Vertex Attribute Interpolation
  • 5.5.
  • Projections
  • 5.5.1.
  • Perspective Projections
  • 5.5.2.
  • Orthographic Projections
  • ch. 2
  • 5.5.3.
  • Extracting Frustum Planes
  • 5.6.
  • Reflections and Oblique Clipping
  • ch. 5
  • Summary
  • Exercises for Chapter 5
  • ch. 6
  • Ray Tracing
  • 6.1.
  • Vectors
  • Root Finding
  • 6.1.1.
  • Quadratic Polynomials
  • 6.1.2.
  • Cubic Polynomials
  • 6.1.3.
  • Quartic Polynomials
  • 6.1.4.
  • Newton's Method
  • 6.1.5.
  • 2.1.
  • Refinement of Reciprocals and Square Roots
  • 6.2.
  • Surface Intersections
  • 6.2.1.
  • Intersection of a Ray and a Triangle
  • 6.2.2.
  • Intersection of a Ray and a Box
  • 6.2.3.
  • Intersection of a Ray and a Sphere
  • 6.2.4.
  • Vector Properties
  • Intersection of a Ray and a Cylinder
  • 6.2.5.
  • Intersection of a Ray and a Torus
  • 6.3.
  • Normal Vector Calculation
  • 6.4.
  • Reflection and Refraction Vectors
  • 6.4.1.
  • Reflection Vector Calculation
  • 6.4.2.
  • 2.2.
  • Refraction Vector Calculation
  • ch. 6
  • Summary
  • Exercises for Chapter 6
  • ch. 7
  • Lighting and Shading
  • 7.1.
  • RGB Color
  • 7.2.
  • Light Sources
  • Dot Product
  • 7.2.1.
  • Ambient Light
  • 7.2.2.
  • Directional Light Sources
  • 7.2.3.
  • Point Light Sources
  • 7.2.4.
  • Spot Light Sources
  • 7.3.
  • Diffuse Reflection
  • 2.3.
  • 7.4.
  • Specular Reflection
  • 7.5.
  • Texture Mapping
  • 7.5.1.
  • Standard Texture Maps
  • 7.5.2.
  • Projective Texture Maps
  • 7.5.3.
  • Cube Texture Maps
  • Cross Product
  • 7.5.4.
  • Filtering and Mipmaps
  • 7.6.
  • Emission
  • 7.7.
  • Shading Models
  • 7.7.1.
  • Calculating Normal Vectors
  • 7.7.2.
  • Gouraud Shading
  • 2.4.
  • 7.7.3.
  • Blinn-Phong Shading
  • 7.8.
  • Bump Mapping
  • 7.8.1.
  • Bump Map Construction
  • 7.8.2.
  • Tangent Space
  • 7.8.3.
  • Calculating Tangent Vectors
  • Machine generated contents note:
  • Vector Spaces
  • 7.8.4.
  • Implementation
  • 7.9.
  • Physical Reflection Model
  • 7.9.1.
  • Bidirectional Reflectance Distribution Functions
  • 7.9.2.
  • Cook-Torrance Illumination
  • 7.9.3.
  • Fresnel Factor
  • ch. 2
  • 7.9.4.
  • Microfacet Distribution Function
  • 7.9.5.
  • Geometrical Attenuation Factor
  • 7.9.6.
  • Implementation
  • ch. 7
  • Summary
  • Exercises for Chapter 7
  • ch. 8
  • Summary
  • Visibility Determination
  • 8.1.
  • Bounding Volume Construction
  • 8.1.1.
  • Principal Component Analysis
  • 8.1.2.
  • Bounding Box Construction
  • 8.1.3.
  • Bounding Sphere Construction
  • 8.1.4.
  • Exercises for Chapter 2
  • Bounding Ellipsoid Construction
  • 8.1.5.
  • Bounding Cylinder Construction
  • 8.2.
  • Bounding Volume Tests
  • 8.2.1.
  • Bounding Sphere Test
  • 8.2.2.
  • Bounding Ellipsoid Test
  • 8.2.3.
  • ch. 3
  • Bounding Cylinder Test
  • 8.2.4.
  • Bounding Box Test
  • 8.3.
  • Spatial Partitioning
  • 8.3.1.
  • Octrees
  • 8.3.2.
  • Binary Space Partitioning Trees
  • 8.4.
  • Matrices
  • Portal Systems
  • 8.4.1.
  • Portal Clipping
  • 8.4.2.
  • Reduced View Frustums
  • ch. 8
  • Summary
  • Exercises for Chapter 8
  • ch. 9
  • Polygonal Techniques
  • 3.1.
  • 9.1.
  • Depth Value Offset
  • 9.1.1.
  • Projection Matrix Modification
  • 9.1.2.
  • Offset Value Selection
  • 9.1.3.
  • Implementation
  • 9.2.
  • Decal Application
  • Matrix Properties
  • 9.2.1.
  • Decal Mesh Construction
  • 9.2.2.
  • Polygon Clipping
  • 9.3.
  • Billboarding
  • 9.3.1.
  • Unconstrained Quads
  • 9.3.2.
  • Constrained Quads
  • 3.2.
  • 9.3.3.
  • Polyboards
  • 9.4.
  • Polygon Reduction
  • 9.5.
  • T-Junction Elimination
  • 9.6.
  • Triangulation
  • ch. 9
  • Summary
  • Linear Systems
  • Exercises for Chapter 9
  • ch. 10
  • Shadows
  • 10.1.
  • Shadow Casting Set
  • 10.2.
  • Shadow Mapping
  • 10.2.1.
  • Rendering the Shadow Map
  • 10.2.2.
  • ch. 1
  • 3.3.
  • Rendering the Main Scene
  • 10.2.3.
  • Self-Shadowing
  • 10.3.
  • Stencil Shadows
  • 10.3.1.
  • Algorithm Overview
  • 10.3.2.
  • Infinite View Frustums
  • 10.3.3.
  • Matrix Inverses
  • Silhouette Determination
  • 10.3.4.
  • Shadow Volume Construction
  • 10.3.5.
  • Determining Cap Necessity
  • 10.3.6.
  • Rendering Shadow Volumes
  • 10.3.7.
  • Scissor Optimization
  • ch. 10
  • 3.4.
  • Summary
  • Exercises for Chapter 10
  • ch. 11
  • Curves and Surfaces
  • 11.1.
  • Cubic Curves
  • 11.2.
  • Hermite Curves
  • 11.3.
  • Bezier Curves
  • Determinants
  • 11.3.1.
  • Cubic Bezier Curves
  • 11.3.2.
  • Bezier Curve Truncation
  • 11.3.3.
  • de Casteljau Algorithm
  • 11.4.
  • Catmull-Rom Splines
  • 11.5.
  • Cubic Splines
  • 3.5.
  • 11.6.
  • B-Splines
  • 11.6.1.
  • Uniform B-Splines
  • 11.6.2.
  • B-Spline Globalization
  • 11.6.3.
  • Nonuniform B-Splines
  • 11.6.4.
  • NURBS
  • Eigenvalues and Eigenvectors
  • 11.7.
  • Bicubic Surfaces
  • 11.8.
  • Curvature and Torsion
  • ch. 11
  • Summary
  • Exercises for Chapter 11
  • ch. 12
  • Collision Detection
  • 12.1.
  • 3.6.
  • Plane Collisions
  • 12.1.1.
  • Collision of a Sphere and a Plane
  • 12.1.2.
  • Collision of a Box and a Plane
  • 12.1.3.
  • Spatial Partitioning
  • 12.2.
  • General Sphere Collisions
  • 12.3.
  • Diagonalization
  • Sliding
  • 12.4.
  • Collision of Two Spheres
  • ch. 12
  • Summary
  • Exercises for Chapter 12
  • ch. 13
  • Linear Physics
  • 13.1.
  • Position Functions
  • ch. 3
  • 13.2.
  • Second-Order Differential Equations
  • 13.2.1.
  • Homogeneous Equations
  • 13.2.2.
  • Nonhomogeneous Equations
  • 13.2.3.
  • Initial Conditions
  • 13.3.
  • Projectile Motion
  • Summary
  • 13.4.
  • Resisted Motion
  • 13.5.
  • Friction
  • ch. 13
  • Summary
  • Exercises for Chapter 13
  • ch. 14
  • Rotational Physics
  • 14.1.
  • Rendering Pipeline
  • Exercises for Chapter 3
  • Rotating Environments
  • 14.1.1.
  • Angular Velocity
  • 14.1.2.
  • Centrifugal Force
  • 14.1.3.
  • Coriolis Force
  • 14.2.
  • Rigid Body Motion
  • 14.2.1.
  • ch. 4
  • Center of Mass
  • 14.2.2.
  • Angular Momentum and Torque
  • 14.2.3.
  • Inertia Tensor
  • 14.2.4.
  • Principal Axes of Inertia
  • 14.2.5.
  • Transforming the Inertia Tensor
  • 14.3.
  • Transforms
  • Oscillatory Motion
  • 14.3.1.
  • Spring Motion
  • 14.3.2.
  • Pendulum Motion
  • ch. 14
  • Summary
  • Exercises for Chapter 14
  • ch. 15
  • Fluid and Cloth Simulation
  • 4.1.
  • 15.1.
  • Fluid Simulation
  • 15.1.1.
  • Wave Equation
  • 15.1.2.
  • Approximating Derivatives
  • 15.1.3.
  • Evaluating Surface Displacement
  • 15.1.4.
  • Implementation
  • Linear Transformations
  • 15.2.
  • Cloth Simulation
  • 15.2.1.
  • Spring System
  • 15.2.2.
  • External Forces
  • 15.2.3.
  • Implementation
  • ch. 15
  • Summary
  • 4.1.1.
  • Exercises for Chapter 15
  • ch. 16
  • Numerical Methods
  • 16.1.
  • Trigonometric Functions
  • 16.2.
  • Linear Systems
  • 16.2.1.
  • Triangular Systems
  • 16.2.2.
  • Orthogonal Matrices
  • Gaussian Elimination
  • 16.2.3.
  • LU Decomposition
  • 16.2.4.
  • Error Reduction
  • 16.2.5.
  • Tridiagonal Systems
  • 16.3.
  • Eigenvalues and Eigenvectors
  • 16.4.
  • 4.1.2.
  • Ordinary Differential Equations
  • 16.4.1.
  • Euler's Method
  • 16.4.2.
  • Taylor Series Method
  • 16.4.3.
  • Runge-Kutta Method
  • 16.4.4.
  • Higher-Order Differential Equations
  • ch
  • Handedness
  • 4.2.
  • 1.1.
  • Scaling Transforms
  • 4.3.
  • Rotation Transforms
  • 4.3.1.
  • Rotation About an Arbitrary Axis
  • 4.4.
  • Homogeneous Coordinates
  • 4.4.1.
  • Four-Dimensional Transforms
  • 4.4.2.
  • Graphics Processors
  • Points and Directions
  • 4.4.3.
  • Geometrical Interpretation of the w Coordinate
  • 4.5.
  • Transforming Normal Vectors
  • 4.6.
  • Quaternions
  • 4.6.1.
  • Quaternion Mathematics
  • 4.6.2.
  • 1.2.
  • Rotations with Quaternions
  • 4.6.3.
  • Spherical Linear Interpolation
  • ch. 4
  • Summary
  • Exercises for Chapter 4
  • ch. 5
  • Geometry for 3D Engines
  • 5.1.
  • Lines in 3D Space
  • Vertex Transformation
  • 5.1.1.
  • Distance Between a Point and a Line
  • 5.1.2.
  • Distance Between Two Lines
  • 5.2.
  • Planes in 3D Space
  • 5.2.1.
  • Intersection of a Line and a Plane
  • 5.2.2.
  • Intersection of Three Planes
  • 1.3.
  • 5.2.3.
  • Transforming Planes
  • 5.3.
  • View Frustum
  • 5.3.1.
  • Field of View
  • 5.3.2.
  • Frustum Planes
  • 5.4.
  • Perspective-Correct Interpolation
  • Addition and Multiplication
  • A.3.
  • Conjugates and Inverses
  • A.4.
  • Euler Formula
  • Appendix B
  • Trigonometry Reference
  • B.1.
  • Function Definitions
  • B.2.
  • 16
  • Symmetry and Phase Shifts
  • B.3.
  • Pythagorean Identities
  • B.4.
  • Exponential Identities
  • B.5.
  • Inverse Functions
  • B.6.
  • Laws of Sines and Cosines
  • Appendix C
  • Summary
  • Coordinate Systems
  • C.1.
  • Cartesian Coordinates
  • C.2.
  • Cylindrical Coordinates
  • C.3.
  • Spherical Coordinates
  • C.4.
  • Generalized Coordinates
  • Appendix D
  • Exercises for Chapter 16
  • Taylor Series
  • D.1.
  • Derivation
  • D.2.
  • Power Series
  • D.3.
  • Euler Formula
  • Appendix E
  • Answers to Exercises
  • Chapter 2
  • Appendix
  • Chapter 3
  • Chapter 4
  • Chapter 5
  • Chapter 6
  • Chapter 7
  • Chapter 8
  • Chapter 9
  • Chapter 10
  • Chapter 11
  • Chapter 12
  • A Complex Numbers
  • Chapter 13
  • Chapter 14
  • Chapter 15
  • Chapter 16
  • A.1.
  • Definition
  • A.2.
Control code
725520619
Dimensions
unknown
Edition
3rd ed.
Extent
1 online resource (xviii, 545 pages)
File format
unknown
Form of item
online
Isbn
9781435458871
Lccn
2011924487
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other physical details
illustrations (some color)
http://library.link/vocab/ext/overdrive/overdriveId
cl0500000105
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)725520619
Label
Mathematics for 3D game programming and computer graphics, Eric Lengyel
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Rasterization and Fragment Operations
  • 5.4.1.
  • Depth Interpolation
  • 5.4.2.
  • Vertex Attribute Interpolation
  • 5.5.
  • Projections
  • 5.5.1.
  • Perspective Projections
  • 5.5.2.
  • Orthographic Projections
  • ch. 2
  • 5.5.3.
  • Extracting Frustum Planes
  • 5.6.
  • Reflections and Oblique Clipping
  • ch. 5
  • Summary
  • Exercises for Chapter 5
  • ch. 6
  • Ray Tracing
  • 6.1.
  • Vectors
  • Root Finding
  • 6.1.1.
  • Quadratic Polynomials
  • 6.1.2.
  • Cubic Polynomials
  • 6.1.3.
  • Quartic Polynomials
  • 6.1.4.
  • Newton's Method
  • 6.1.5.
  • 2.1.
  • Refinement of Reciprocals and Square Roots
  • 6.2.
  • Surface Intersections
  • 6.2.1.
  • Intersection of a Ray and a Triangle
  • 6.2.2.
  • Intersection of a Ray and a Box
  • 6.2.3.
  • Intersection of a Ray and a Sphere
  • 6.2.4.
  • Vector Properties
  • Intersection of a Ray and a Cylinder
  • 6.2.5.
  • Intersection of a Ray and a Torus
  • 6.3.
  • Normal Vector Calculation
  • 6.4.
  • Reflection and Refraction Vectors
  • 6.4.1.
  • Reflection Vector Calculation
  • 6.4.2.
  • 2.2.
  • Refraction Vector Calculation
  • ch. 6
  • Summary
  • Exercises for Chapter 6
  • ch. 7
  • Lighting and Shading
  • 7.1.
  • RGB Color
  • 7.2.
  • Light Sources
  • Dot Product
  • 7.2.1.
  • Ambient Light
  • 7.2.2.
  • Directional Light Sources
  • 7.2.3.
  • Point Light Sources
  • 7.2.4.
  • Spot Light Sources
  • 7.3.
  • Diffuse Reflection
  • 2.3.
  • 7.4.
  • Specular Reflection
  • 7.5.
  • Texture Mapping
  • 7.5.1.
  • Standard Texture Maps
  • 7.5.2.
  • Projective Texture Maps
  • 7.5.3.
  • Cube Texture Maps
  • Cross Product
  • 7.5.4.
  • Filtering and Mipmaps
  • 7.6.
  • Emission
  • 7.7.
  • Shading Models
  • 7.7.1.
  • Calculating Normal Vectors
  • 7.7.2.
  • Gouraud Shading
  • 2.4.
  • 7.7.3.
  • Blinn-Phong Shading
  • 7.8.
  • Bump Mapping
  • 7.8.1.
  • Bump Map Construction
  • 7.8.2.
  • Tangent Space
  • 7.8.3.
  • Calculating Tangent Vectors
  • Machine generated contents note:
  • Vector Spaces
  • 7.8.4.
  • Implementation
  • 7.9.
  • Physical Reflection Model
  • 7.9.1.
  • Bidirectional Reflectance Distribution Functions
  • 7.9.2.
  • Cook-Torrance Illumination
  • 7.9.3.
  • Fresnel Factor
  • ch. 2
  • 7.9.4.
  • Microfacet Distribution Function
  • 7.9.5.
  • Geometrical Attenuation Factor
  • 7.9.6.
  • Implementation
  • ch. 7
  • Summary
  • Exercises for Chapter 7
  • ch. 8
  • Summary
  • Visibility Determination
  • 8.1.
  • Bounding Volume Construction
  • 8.1.1.
  • Principal Component Analysis
  • 8.1.2.
  • Bounding Box Construction
  • 8.1.3.
  • Bounding Sphere Construction
  • 8.1.4.
  • Exercises for Chapter 2
  • Bounding Ellipsoid Construction
  • 8.1.5.
  • Bounding Cylinder Construction
  • 8.2.
  • Bounding Volume Tests
  • 8.2.1.
  • Bounding Sphere Test
  • 8.2.2.
  • Bounding Ellipsoid Test
  • 8.2.3.
  • ch. 3
  • Bounding Cylinder Test
  • 8.2.4.
  • Bounding Box Test
  • 8.3.
  • Spatial Partitioning
  • 8.3.1.
  • Octrees
  • 8.3.2.
  • Binary Space Partitioning Trees
  • 8.4.
  • Matrices
  • Portal Systems
  • 8.4.1.
  • Portal Clipping
  • 8.4.2.
  • Reduced View Frustums
  • ch. 8
  • Summary
  • Exercises for Chapter 8
  • ch. 9
  • Polygonal Techniques
  • 3.1.
  • 9.1.
  • Depth Value Offset
  • 9.1.1.
  • Projection Matrix Modification
  • 9.1.2.
  • Offset Value Selection
  • 9.1.3.
  • Implementation
  • 9.2.
  • Decal Application
  • Matrix Properties
  • 9.2.1.
  • Decal Mesh Construction
  • 9.2.2.
  • Polygon Clipping
  • 9.3.
  • Billboarding
  • 9.3.1.
  • Unconstrained Quads
  • 9.3.2.
  • Constrained Quads
  • 3.2.
  • 9.3.3.
  • Polyboards
  • 9.4.
  • Polygon Reduction
  • 9.5.
  • T-Junction Elimination
  • 9.6.
  • Triangulation
  • ch. 9
  • Summary
  • Linear Systems
  • Exercises for Chapter 9
  • ch. 10
  • Shadows
  • 10.1.
  • Shadow Casting Set
  • 10.2.
  • Shadow Mapping
  • 10.2.1.
  • Rendering the Shadow Map
  • 10.2.2.
  • ch. 1
  • 3.3.
  • Rendering the Main Scene
  • 10.2.3.
  • Self-Shadowing
  • 10.3.
  • Stencil Shadows
  • 10.3.1.
  • Algorithm Overview
  • 10.3.2.
  • Infinite View Frustums
  • 10.3.3.
  • Matrix Inverses
  • Silhouette Determination
  • 10.3.4.
  • Shadow Volume Construction
  • 10.3.5.
  • Determining Cap Necessity
  • 10.3.6.
  • Rendering Shadow Volumes
  • 10.3.7.
  • Scissor Optimization
  • ch. 10
  • 3.4.
  • Summary
  • Exercises for Chapter 10
  • ch. 11
  • Curves and Surfaces
  • 11.1.
  • Cubic Curves
  • 11.2.
  • Hermite Curves
  • 11.3.
  • Bezier Curves
  • Determinants
  • 11.3.1.
  • Cubic Bezier Curves
  • 11.3.2.
  • Bezier Curve Truncation
  • 11.3.3.
  • de Casteljau Algorithm
  • 11.4.
  • Catmull-Rom Splines
  • 11.5.
  • Cubic Splines
  • 3.5.
  • 11.6.
  • B-Splines
  • 11.6.1.
  • Uniform B-Splines
  • 11.6.2.
  • B-Spline Globalization
  • 11.6.3.
  • Nonuniform B-Splines
  • 11.6.4.
  • NURBS
  • Eigenvalues and Eigenvectors
  • 11.7.
  • Bicubic Surfaces
  • 11.8.
  • Curvature and Torsion
  • ch. 11
  • Summary
  • Exercises for Chapter 11
  • ch. 12
  • Collision Detection
  • 12.1.
  • 3.6.
  • Plane Collisions
  • 12.1.1.
  • Collision of a Sphere and a Plane
  • 12.1.2.
  • Collision of a Box and a Plane
  • 12.1.3.
  • Spatial Partitioning
  • 12.2.
  • General Sphere Collisions
  • 12.3.
  • Diagonalization
  • Sliding
  • 12.4.
  • Collision of Two Spheres
  • ch. 12
  • Summary
  • Exercises for Chapter 12
  • ch. 13
  • Linear Physics
  • 13.1.
  • Position Functions
  • ch. 3
  • 13.2.
  • Second-Order Differential Equations
  • 13.2.1.
  • Homogeneous Equations
  • 13.2.2.
  • Nonhomogeneous Equations
  • 13.2.3.
  • Initial Conditions
  • 13.3.
  • Projectile Motion
  • Summary
  • 13.4.
  • Resisted Motion
  • 13.5.
  • Friction
  • ch. 13
  • Summary
  • Exercises for Chapter 13
  • ch. 14
  • Rotational Physics
  • 14.1.
  • Rendering Pipeline
  • Exercises for Chapter 3
  • Rotating Environments
  • 14.1.1.
  • Angular Velocity
  • 14.1.2.
  • Centrifugal Force
  • 14.1.3.
  • Coriolis Force
  • 14.2.
  • Rigid Body Motion
  • 14.2.1.
  • ch. 4
  • Center of Mass
  • 14.2.2.
  • Angular Momentum and Torque
  • 14.2.3.
  • Inertia Tensor
  • 14.2.4.
  • Principal Axes of Inertia
  • 14.2.5.
  • Transforming the Inertia Tensor
  • 14.3.
  • Transforms
  • Oscillatory Motion
  • 14.3.1.
  • Spring Motion
  • 14.3.2.
  • Pendulum Motion
  • ch. 14
  • Summary
  • Exercises for Chapter 14
  • ch. 15
  • Fluid and Cloth Simulation
  • 4.1.
  • 15.1.
  • Fluid Simulation
  • 15.1.1.
  • Wave Equation
  • 15.1.2.
  • Approximating Derivatives
  • 15.1.3.
  • Evaluating Surface Displacement
  • 15.1.4.
  • Implementation
  • Linear Transformations
  • 15.2.
  • Cloth Simulation
  • 15.2.1.
  • Spring System
  • 15.2.2.
  • External Forces
  • 15.2.3.
  • Implementation
  • ch. 15
  • Summary
  • 4.1.1.
  • Exercises for Chapter 15
  • ch. 16
  • Numerical Methods
  • 16.1.
  • Trigonometric Functions
  • 16.2.
  • Linear Systems
  • 16.2.1.
  • Triangular Systems
  • 16.2.2.
  • Orthogonal Matrices
  • Gaussian Elimination
  • 16.2.3.
  • LU Decomposition
  • 16.2.4.
  • Error Reduction
  • 16.2.5.
  • Tridiagonal Systems
  • 16.3.
  • Eigenvalues and Eigenvectors
  • 16.4.
  • 4.1.2.
  • Ordinary Differential Equations
  • 16.4.1.
  • Euler's Method
  • 16.4.2.
  • Taylor Series Method
  • 16.4.3.
  • Runge-Kutta Method
  • 16.4.4.
  • Higher-Order Differential Equations
  • ch
  • Handedness
  • 4.2.
  • 1.1.
  • Scaling Transforms
  • 4.3.
  • Rotation Transforms
  • 4.3.1.
  • Rotation About an Arbitrary Axis
  • 4.4.
  • Homogeneous Coordinates
  • 4.4.1.
  • Four-Dimensional Transforms
  • 4.4.2.
  • Graphics Processors
  • Points and Directions
  • 4.4.3.
  • Geometrical Interpretation of the w Coordinate
  • 4.5.
  • Transforming Normal Vectors
  • 4.6.
  • Quaternions
  • 4.6.1.
  • Quaternion Mathematics
  • 4.6.2.
  • 1.2.
  • Rotations with Quaternions
  • 4.6.3.
  • Spherical Linear Interpolation
  • ch. 4
  • Summary
  • Exercises for Chapter 4
  • ch. 5
  • Geometry for 3D Engines
  • 5.1.
  • Lines in 3D Space
  • Vertex Transformation
  • 5.1.1.
  • Distance Between a Point and a Line
  • 5.1.2.
  • Distance Between Two Lines
  • 5.2.
  • Planes in 3D Space
  • 5.2.1.
  • Intersection of a Line and a Plane
  • 5.2.2.
  • Intersection of Three Planes
  • 1.3.
  • 5.2.3.
  • Transforming Planes
  • 5.3.
  • View Frustum
  • 5.3.1.
  • Field of View
  • 5.3.2.
  • Frustum Planes
  • 5.4.
  • Perspective-Correct Interpolation
  • Addition and Multiplication
  • A.3.
  • Conjugates and Inverses
  • A.4.
  • Euler Formula
  • Appendix B
  • Trigonometry Reference
  • B.1.
  • Function Definitions
  • B.2.
  • 16
  • Symmetry and Phase Shifts
  • B.3.
  • Pythagorean Identities
  • B.4.
  • Exponential Identities
  • B.5.
  • Inverse Functions
  • B.6.
  • Laws of Sines and Cosines
  • Appendix C
  • Summary
  • Coordinate Systems
  • C.1.
  • Cartesian Coordinates
  • C.2.
  • Cylindrical Coordinates
  • C.3.
  • Spherical Coordinates
  • C.4.
  • Generalized Coordinates
  • Appendix D
  • Exercises for Chapter 16
  • Taylor Series
  • D.1.
  • Derivation
  • D.2.
  • Power Series
  • D.3.
  • Euler Formula
  • Appendix E
  • Answers to Exercises
  • Chapter 2
  • Appendix
  • Chapter 3
  • Chapter 4
  • Chapter 5
  • Chapter 6
  • Chapter 7
  • Chapter 8
  • Chapter 9
  • Chapter 10
  • Chapter 11
  • Chapter 12
  • A Complex Numbers
  • Chapter 13
  • Chapter 14
  • Chapter 15
  • Chapter 16
  • A.1.
  • Definition
  • A.2.
Control code
725520619
Dimensions
unknown
Edition
3rd ed.
Extent
1 online resource (xviii, 545 pages)
File format
unknown
Form of item
online
Isbn
9781435458871
Lccn
2011924487
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other physical details
illustrations (some color)
http://library.link/vocab/ext/overdrive/overdriveId
cl0500000105
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)725520619

Library Locations

    • Thomas Jefferson LibraryBorrow it
      1 University Blvd, St. Louis, MO, 63121, US
      38.710138 -90.311107
Processing Feedback ...