Coverart for item
The Resource Microfluidics for medical applications, edited by Albert Berg and Loes Segerink

Microfluidics for medical applications, edited by Albert Berg and Loes Segerink

Label
Microfluidics for medical applications
Title
Microfluidics for medical applications
Statement of responsibility
edited by Albert Berg and Loes Segerink
Contributor
Editor
Subject
Genre
Language
eng
Member of
Cataloging source
COO
Dewey number
532.05
Illustrations
illustrations
Index
index present
LC call number
TJ853.4.M53
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
NLM call number
QT 34
http://library.link/vocab/relatedWorkOrContributorName
  • Berg, A. van den
  • Segerink, Loes
Series statement
RSC nanoscience & nanotechnology,
Series volume
no. 36
http://library.link/vocab/subjectName
  • Microfluidics
  • Medical technology
  • Microbubbles
  • Microfluidics
  • Chemistry
  • Clinical & internal medicine
  • TECHNOLOGY & ENGINEERING
  • Medical technology
  • Microfluidics
Label
Microfluidics for medical applications, edited by Albert Berg and Loes Segerink
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • 1.2.1.
  • Co-axial Flow Systems
  • 1.3.
  • Wetspinning
  • 1.4.
  • Meltspinning (Extrusion)
  • 1.5.
  • Electrospinning
  • 1.6.
  • Conclusions
  • Machine generated contents note:
  • Acknowledgements
  • References
  • ch. 2
  • Kidney on a Chip
  • Kahp-Yang Suh
  • 2.1.
  • Introduction
  • 2.2.
  • Kidney Structure and Function
  • 2.3.
  • ch. 1
  • Mimicking Kidney Environment
  • 2.3.1.
  • Extracellular Matrix
  • 2.3.2.
  • Mechanical Stimulation
  • 2.3.3.
  • Various Kidney Cells
  • 2.3.4.
  • Extracellular Environment
  • 2.4.
  • Microtechnologies in the Fabrication of Fibers for Tissue Engineering
  • Kidney on a Chip
  • 2.4.1.
  • Microfluidic Approach for Kidney on a Chip
  • 2.4.2.
  • Fabrication of Kidney on a Chip
  • 2.4.3.
  • Various Kidney Chips
  • 2.5.
  • Future Opportunities and Challenges
  • References
  • Ali Khademhosseini
  • ch. 3
  • Blood-brain Barrier (BBB): An Overview of the Research of the Blood-brain Barrier Using Microfluidic Devices
  • Albert van den Berg
  • 1.1.
  • Introduction
  • 1.2.
  • Fiber Formation Techniques
  • 3.2.3.
  • Multidrug Resistance
  • 3.2.4.
  • Neurodegenerative Diseases -- Loss of BBB Function
  • 3.3.
  • Modeling the BBB in Vitro
  • 3.3.1.
  • Microfluidic in Vitro Models of the BBB: the "BBB-on-Chip"
  • 3.3.2.
  • Cellular Engineering
  • 3.1.
  • 3.3.3.
  • Biochemical Engineering
  • 3.3.4.
  • Biophysical Engineering
  • 3.4.
  • Measurement Techniques
  • 3.4.1.
  • Transendothelial Electrical Resistance
  • 3.4.2.
  • Permeability
  • Introduction
  • 3.4.3.
  • Fluorescence Microscopy
  • 3.5.
  • Conclusion and Future Prospects
  • Acknowledgements
  • References
  • ch. 4
  • The Use of Microfluidic-based Neuronal Cell Cultures to Study Alzheimer's Disease
  • Philippe Renaud
  • 4.1.
  • 3.2.
  • Alzheimer's Disease -- Increased Mortality Rates and Still Incurable
  • 4.2.
  • Unknowns of Alzheimer's Disease
  • 4.2.1.
  • Molecular Key Players of AD
  • 4.2.2.
  • From Molecules to Neuronal Networks
  • 4.3.
  • Why Microsystems May Be a Key in Understanding the Propagation of AD
  • 4.3.1.
  • Blood-brain Barrier
  • Requirements for in Vitro Studies on AD Progression
  • 3.2.1.
  • Neurovascular Unit
  • 3.2.2.
  • Transport
  • 4.5.
  • Questions that May Be Addressed by Micro-controlled Cultures
  • References
  • ch. 5
  • Microbubbles for Medical Applications
  • Michel Versluis
  • 5.1.
  • Introduction
  • 5.1.1.
  • Microbubbles for Imaging
  • 4.3.2.
  • 5.1.2.
  • Microbubbles for Therapy
  • 5.1.3.
  • Microbubbles for Cleaning
  • 5.2.
  • Microbubble Basics
  • 5.2.1.
  • Microbubble Dynamics
  • 5.3.
  • Microbubble Stability
  • Establishing Ordered Neuronal Cultures with Microfluidics
  • 5.4.
  • Microbubble Formation
  • 5.5.
  • Microbubble Modeling and Characterization
  • 5.5.1.
  • Optical Characterization
  • 5.5.2.
  • Sorting Techniques
  • 5.5.3.
  • Acoustical Characterization
  • 4.4.
  • 5.6.
  • Conclusions
  • Acknowledgements
  • References
  • ch. 6
  • Magnetic Particle Actuation in Stationary Microfluidics for Integrated Lab-on-Chip Biosensors
  • Menno W.J. Prins
  • 6.1.
  • Introduction
  • 6.2.
  • Micro-devices-based in Vitro Alzheimer Models
  • Capture of Analyte Using Magnetic Particles
  • 4.4.1.
  • First Microtechnology-based Experimental Models
  • 4.4.2.
  • Requirements of Future Micro-device-based Studies
  • 6.3.2.
  • Agglutination Assay with Magnetic Particles
  • 6.3.3.
  • Surface-binding Assay with Magnetic Particles as Labels
  • 6.3.4.
  • Magnetic Stringency
  • 6.4.
  • Integration of Magnetic Actuation Processes
  • 6.5.
  • Conclusions
  • 6.2.1.
  • Acknowledgements
  • References
  • ch. 7
  • Microfluidics for Assisted Reproductive Technologies
  • Shuichi Takayama
  • 7.1.
  • Introduction
  • 7.2.
  • Gamete Manipulations
  • 7.2.1.
  • The Analyte Capture Process
  • Male Gamete Sorting
  • 7.2.2.
  • Female Gamete Quality Assessment
  • 7.3.
  • In Vitro Fertilization
  • 7.4.
  • Cryopreservation
  • 7.5.
  • Embryo Culture
  • 7.6.
  • 6.2.2.
  • Embryo Analysis
  • 7.7.
  • Conclusion
  • References
  • ch. 8
  • Microfluidic Diagnostics for Low-resource Settings: Improving Global Health without a Power Cord
  • Paul Yager
  • 8.1.
  • Introduction: Need for Diagnostics in Low-resource Settings
  • 8.1.1.
  • Analyte Capture Using Magnetic Particles in a Static Fluid
  • Importance of Diagnostic Testing
  • 8.1.2.
  • Limitations in Low-resource Settings
  • 6.3.
  • Analyte Detection
  • 6.3.1.
  • Magnetic Particles as Carriers
  • 8.2.3.
  • Counterfeit Drug Testing
  • 8.2.4.
  • Environmental Testing
  • 8.3.
  • Overview of Microfluidic Diagnostics for Use at the Point of Care
  • 8.3.1.
  • Channel-based Microfluidics
  • 8.3.2.
  • Paper-based Microfluidics
  • 8.1.3.
  • 8.4.
  • Enabling All Aspects of Diagnostic Testing in Low-resource Settings: Examples of and Opportunities for Microfluidics (Channel-based and Paper-based)
  • 8.4.1.
  • Transportation and Storage of Devices in Low-resource Settings
  • 8.4.2.
  • Specimen Collection
  • 8.4.3.
  • Sample Preparation
  • 8.4.4.
  • Running the Assay
  • Scope of Chapter
  • 8.4.5.
  • Signal Read-out
  • 8.4.6.
  • Data Integration into Health Systems
  • 8.4.7.
  • Disposal
  • 8.5.
  • Conclusions
  • References
  • ch. 9
  • 8.2.
  • Isolation and Characterization of Circulating Tumor Cells
  • Leon W.M.M. Terstappen
  • 9.1.
  • Introduction
  • 9.2.
  • CTC Definition in CellSearch System
  • 9.3.
  • Clinical Relevance of CTCs
  • 9.4.
  • Identification of Treatment Targets on CTCs
  • Types of Diagnostic Testing Needed in Low-resource Settings
  • 8.2.1.
  • Diagnosing Disease
  • 8.2.2.
  • Monitoring Disease
  • 9.6.3.
  • Microfluidic Devices to Isolate CTCs Based on Physical as well as Immunological Properties
  • 9.6.4.
  • Characterization of CTCs in Microfluidic Devices
  • 9.7.
  • Summary and Outlook
  • References
  • ch. 10
  • Microfluidic Impedance Cytometry for Blood Cell Analysis
  • Daniel Spencer
  • 9.5.
  • 10.1.
  • Introduction
  • 10.2.
  • The Full Blood Count
  • 10.2.1.
  • Clinical Diagnosis and the Full Blood Count
  • 10.2.2.
  • Commercial FBC Devices
  • 10.3.
  • Microfluidic Impedance Cytometry (MIC)
  • Technologies for CTC Enumeration
  • 10.3.1.
  • Measurement Principle
  • 10.3.2.
  • Behavior of Cells in AC fields
  • 10.3.3.
  • Sizing Particles
  • 10.3.4.
  • Cell Membrane Capacitance Measurements
  • 10.3.5.
  • Microfluidic FBC Chip
  • 9.6.
  • 10.3.6.
  • Accuracy and Resolution
  • 10.3.7.
  • Antibody Detection
  • 10.4.
  • Further Applications of MIC
  • Isolation and Identification of CTCs in Microfluidic Devices
  • 9.6.1.
  • Microfluidic Devices for CTC Isolation Based on Physical Properties
  • 9.6.2.
  • Microfluidic Devices to Isolate CTCs Based on Immunological Properties
  • 10.5.
  • Future Challenges
  • References
  • ch. 11
  • Routine Clinical Laboratory Diagnostics Using Point of Care or Lab on a Chip Technology
  • Istvan Vermes
  • 11.1.
  • Introduction
  • 11.2.
  • Point-of-care Testing
  • 10.4.1.
  • 11.2.1.
  • Categorization of POCT Devices
  • 11.2.2.
  • Role of POCT in Laboratory Medicine
  • 11.3.
  • Glucometers
  • 11.3.1.
  • The WHO and ADA Criteria of Diabetes
  • 11.3.2.
  • Plasma Glucose or Blood Glucose
  • Cell Counting and Viability
  • 11.3.3.
  • Glucometers in Medical Practice
  • 11.3.4.
  • Glucometers in Gestational Diabetes
  • 11.3.5.
  • Continuous Glucose Monitoring
  • 11.4.
  • i-STAT: a Multi-parameter Unit-use POCT Instrument
  • 11.4.1.
  • Clinical Chemistry
  • 10.4.2.
  • 11.4.2.
  • Cardiac Markers
  • 11.4.3.
  • Hematology
  • 11.4.4.
  • Clinical Use and Performance
  • 11.5.
  • Conclusions
  • References
  • ch. 12
  • Parasitized Cells
  • Medimate Minilab, a Microchip Capillary Electrophoresis Self-test Platform
  • Jan C.T. Eijkel
  • 12.1.
  • Introduction
  • 10.4.3.
  • Tumor Cells and Stem Cell Morphology
  • 10.4.4.
  • High-frequency Measurements
  • 12.3.
  • A Lithium Self-test for Patients with Manic Depressive Illness
  • 12.4.
  • Validation Method
  • 12.4.1.
  • Applied Guidelines
  • 12.4.2.
  • Acceptance Criteria
  • 12.4.3.
  • Sample Availability, Preparation, and other Considerations
  • 12.2.
  • 12.5.
  • Validation Results
  • 12.5.1.
  • Reproducibility
  • 12.5.2.
  • Linearity
  • 12.5.3.
  • Method Comparison
  • 12.5.4.
  • Home Test
  • Microfluidic Capillary Electrophoresis as a Self-test Platform
  • 12.5.5.
  • Other Study Results
  • 12.5.6.
  • Final Evaluation
  • 12.6.
  • Platform Potential
  • 12.6.1.
  • Current Platform Capabilities
  • 12.6.2.
  • Future Possibilities and Limitations
  • 12.2.1.
  • 12.7.
  • Conclusions
  • Acknowledgements
  • References
  • Conducting a Measurement
  • 12.2.2.
  • Measurement Process
  • 12.2.3.
  • From Research Technology to Self-test Platform
Control code
898200196
Dimensions
unknown
Extent
1 online resource (xvii, 303 pages)
Form of item
online
Isbn
9781849737593
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other physical details
illustrations
http://library.link/vocab/ext/overdrive/overdriveId
31789781849737593
Specific material designation
remote
System control number
(OCoLC)898200196
Label
Microfluidics for medical applications, edited by Albert Berg and Loes Segerink
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • 1.2.1.
  • Co-axial Flow Systems
  • 1.3.
  • Wetspinning
  • 1.4.
  • Meltspinning (Extrusion)
  • 1.5.
  • Electrospinning
  • 1.6.
  • Conclusions
  • Machine generated contents note:
  • Acknowledgements
  • References
  • ch. 2
  • Kidney on a Chip
  • Kahp-Yang Suh
  • 2.1.
  • Introduction
  • 2.2.
  • Kidney Structure and Function
  • 2.3.
  • ch. 1
  • Mimicking Kidney Environment
  • 2.3.1.
  • Extracellular Matrix
  • 2.3.2.
  • Mechanical Stimulation
  • 2.3.3.
  • Various Kidney Cells
  • 2.3.4.
  • Extracellular Environment
  • 2.4.
  • Microtechnologies in the Fabrication of Fibers for Tissue Engineering
  • Kidney on a Chip
  • 2.4.1.
  • Microfluidic Approach for Kidney on a Chip
  • 2.4.2.
  • Fabrication of Kidney on a Chip
  • 2.4.3.
  • Various Kidney Chips
  • 2.5.
  • Future Opportunities and Challenges
  • References
  • Ali Khademhosseini
  • ch. 3
  • Blood-brain Barrier (BBB): An Overview of the Research of the Blood-brain Barrier Using Microfluidic Devices
  • Albert van den Berg
  • 1.1.
  • Introduction
  • 1.2.
  • Fiber Formation Techniques
  • 3.2.3.
  • Multidrug Resistance
  • 3.2.4.
  • Neurodegenerative Diseases -- Loss of BBB Function
  • 3.3.
  • Modeling the BBB in Vitro
  • 3.3.1.
  • Microfluidic in Vitro Models of the BBB: the "BBB-on-Chip"
  • 3.3.2.
  • Cellular Engineering
  • 3.1.
  • 3.3.3.
  • Biochemical Engineering
  • 3.3.4.
  • Biophysical Engineering
  • 3.4.
  • Measurement Techniques
  • 3.4.1.
  • Transendothelial Electrical Resistance
  • 3.4.2.
  • Permeability
  • Introduction
  • 3.4.3.
  • Fluorescence Microscopy
  • 3.5.
  • Conclusion and Future Prospects
  • Acknowledgements
  • References
  • ch. 4
  • The Use of Microfluidic-based Neuronal Cell Cultures to Study Alzheimer's Disease
  • Philippe Renaud
  • 4.1.
  • 3.2.
  • Alzheimer's Disease -- Increased Mortality Rates and Still Incurable
  • 4.2.
  • Unknowns of Alzheimer's Disease
  • 4.2.1.
  • Molecular Key Players of AD
  • 4.2.2.
  • From Molecules to Neuronal Networks
  • 4.3.
  • Why Microsystems May Be a Key in Understanding the Propagation of AD
  • 4.3.1.
  • Blood-brain Barrier
  • Requirements for in Vitro Studies on AD Progression
  • 3.2.1.
  • Neurovascular Unit
  • 3.2.2.
  • Transport
  • 4.5.
  • Questions that May Be Addressed by Micro-controlled Cultures
  • References
  • ch. 5
  • Microbubbles for Medical Applications
  • Michel Versluis
  • 5.1.
  • Introduction
  • 5.1.1.
  • Microbubbles for Imaging
  • 4.3.2.
  • 5.1.2.
  • Microbubbles for Therapy
  • 5.1.3.
  • Microbubbles for Cleaning
  • 5.2.
  • Microbubble Basics
  • 5.2.1.
  • Microbubble Dynamics
  • 5.3.
  • Microbubble Stability
  • Establishing Ordered Neuronal Cultures with Microfluidics
  • 5.4.
  • Microbubble Formation
  • 5.5.
  • Microbubble Modeling and Characterization
  • 5.5.1.
  • Optical Characterization
  • 5.5.2.
  • Sorting Techniques
  • 5.5.3.
  • Acoustical Characterization
  • 4.4.
  • 5.6.
  • Conclusions
  • Acknowledgements
  • References
  • ch. 6
  • Magnetic Particle Actuation in Stationary Microfluidics for Integrated Lab-on-Chip Biosensors
  • Menno W.J. Prins
  • 6.1.
  • Introduction
  • 6.2.
  • Micro-devices-based in Vitro Alzheimer Models
  • Capture of Analyte Using Magnetic Particles
  • 4.4.1.
  • First Microtechnology-based Experimental Models
  • 4.4.2.
  • Requirements of Future Micro-device-based Studies
  • 6.3.2.
  • Agglutination Assay with Magnetic Particles
  • 6.3.3.
  • Surface-binding Assay with Magnetic Particles as Labels
  • 6.3.4.
  • Magnetic Stringency
  • 6.4.
  • Integration of Magnetic Actuation Processes
  • 6.5.
  • Conclusions
  • 6.2.1.
  • Acknowledgements
  • References
  • ch. 7
  • Microfluidics for Assisted Reproductive Technologies
  • Shuichi Takayama
  • 7.1.
  • Introduction
  • 7.2.
  • Gamete Manipulations
  • 7.2.1.
  • The Analyte Capture Process
  • Male Gamete Sorting
  • 7.2.2.
  • Female Gamete Quality Assessment
  • 7.3.
  • In Vitro Fertilization
  • 7.4.
  • Cryopreservation
  • 7.5.
  • Embryo Culture
  • 7.6.
  • 6.2.2.
  • Embryo Analysis
  • 7.7.
  • Conclusion
  • References
  • ch. 8
  • Microfluidic Diagnostics for Low-resource Settings: Improving Global Health without a Power Cord
  • Paul Yager
  • 8.1.
  • Introduction: Need for Diagnostics in Low-resource Settings
  • 8.1.1.
  • Analyte Capture Using Magnetic Particles in a Static Fluid
  • Importance of Diagnostic Testing
  • 8.1.2.
  • Limitations in Low-resource Settings
  • 6.3.
  • Analyte Detection
  • 6.3.1.
  • Magnetic Particles as Carriers
  • 8.2.3.
  • Counterfeit Drug Testing
  • 8.2.4.
  • Environmental Testing
  • 8.3.
  • Overview of Microfluidic Diagnostics for Use at the Point of Care
  • 8.3.1.
  • Channel-based Microfluidics
  • 8.3.2.
  • Paper-based Microfluidics
  • 8.1.3.
  • 8.4.
  • Enabling All Aspects of Diagnostic Testing in Low-resource Settings: Examples of and Opportunities for Microfluidics (Channel-based and Paper-based)
  • 8.4.1.
  • Transportation and Storage of Devices in Low-resource Settings
  • 8.4.2.
  • Specimen Collection
  • 8.4.3.
  • Sample Preparation
  • 8.4.4.
  • Running the Assay
  • Scope of Chapter
  • 8.4.5.
  • Signal Read-out
  • 8.4.6.
  • Data Integration into Health Systems
  • 8.4.7.
  • Disposal
  • 8.5.
  • Conclusions
  • References
  • ch. 9
  • 8.2.
  • Isolation and Characterization of Circulating Tumor Cells
  • Leon W.M.M. Terstappen
  • 9.1.
  • Introduction
  • 9.2.
  • CTC Definition in CellSearch System
  • 9.3.
  • Clinical Relevance of CTCs
  • 9.4.
  • Identification of Treatment Targets on CTCs
  • Types of Diagnostic Testing Needed in Low-resource Settings
  • 8.2.1.
  • Diagnosing Disease
  • 8.2.2.
  • Monitoring Disease
  • 9.6.3.
  • Microfluidic Devices to Isolate CTCs Based on Physical as well as Immunological Properties
  • 9.6.4.
  • Characterization of CTCs in Microfluidic Devices
  • 9.7.
  • Summary and Outlook
  • References
  • ch. 10
  • Microfluidic Impedance Cytometry for Blood Cell Analysis
  • Daniel Spencer
  • 9.5.
  • 10.1.
  • Introduction
  • 10.2.
  • The Full Blood Count
  • 10.2.1.
  • Clinical Diagnosis and the Full Blood Count
  • 10.2.2.
  • Commercial FBC Devices
  • 10.3.
  • Microfluidic Impedance Cytometry (MIC)
  • Technologies for CTC Enumeration
  • 10.3.1.
  • Measurement Principle
  • 10.3.2.
  • Behavior of Cells in AC fields
  • 10.3.3.
  • Sizing Particles
  • 10.3.4.
  • Cell Membrane Capacitance Measurements
  • 10.3.5.
  • Microfluidic FBC Chip
  • 9.6.
  • 10.3.6.
  • Accuracy and Resolution
  • 10.3.7.
  • Antibody Detection
  • 10.4.
  • Further Applications of MIC
  • Isolation and Identification of CTCs in Microfluidic Devices
  • 9.6.1.
  • Microfluidic Devices for CTC Isolation Based on Physical Properties
  • 9.6.2.
  • Microfluidic Devices to Isolate CTCs Based on Immunological Properties
  • 10.5.
  • Future Challenges
  • References
  • ch. 11
  • Routine Clinical Laboratory Diagnostics Using Point of Care or Lab on a Chip Technology
  • Istvan Vermes
  • 11.1.
  • Introduction
  • 11.2.
  • Point-of-care Testing
  • 10.4.1.
  • 11.2.1.
  • Categorization of POCT Devices
  • 11.2.2.
  • Role of POCT in Laboratory Medicine
  • 11.3.
  • Glucometers
  • 11.3.1.
  • The WHO and ADA Criteria of Diabetes
  • 11.3.2.
  • Plasma Glucose or Blood Glucose
  • Cell Counting and Viability
  • 11.3.3.
  • Glucometers in Medical Practice
  • 11.3.4.
  • Glucometers in Gestational Diabetes
  • 11.3.5.
  • Continuous Glucose Monitoring
  • 11.4.
  • i-STAT: a Multi-parameter Unit-use POCT Instrument
  • 11.4.1.
  • Clinical Chemistry
  • 10.4.2.
  • 11.4.2.
  • Cardiac Markers
  • 11.4.3.
  • Hematology
  • 11.4.4.
  • Clinical Use and Performance
  • 11.5.
  • Conclusions
  • References
  • ch. 12
  • Parasitized Cells
  • Medimate Minilab, a Microchip Capillary Electrophoresis Self-test Platform
  • Jan C.T. Eijkel
  • 12.1.
  • Introduction
  • 10.4.3.
  • Tumor Cells and Stem Cell Morphology
  • 10.4.4.
  • High-frequency Measurements
  • 12.3.
  • A Lithium Self-test for Patients with Manic Depressive Illness
  • 12.4.
  • Validation Method
  • 12.4.1.
  • Applied Guidelines
  • 12.4.2.
  • Acceptance Criteria
  • 12.4.3.
  • Sample Availability, Preparation, and other Considerations
  • 12.2.
  • 12.5.
  • Validation Results
  • 12.5.1.
  • Reproducibility
  • 12.5.2.
  • Linearity
  • 12.5.3.
  • Method Comparison
  • 12.5.4.
  • Home Test
  • Microfluidic Capillary Electrophoresis as a Self-test Platform
  • 12.5.5.
  • Other Study Results
  • 12.5.6.
  • Final Evaluation
  • 12.6.
  • Platform Potential
  • 12.6.1.
  • Current Platform Capabilities
  • 12.6.2.
  • Future Possibilities and Limitations
  • 12.2.1.
  • 12.7.
  • Conclusions
  • Acknowledgements
  • References
  • Conducting a Measurement
  • 12.2.2.
  • Measurement Process
  • 12.2.3.
  • From Research Technology to Self-test Platform
Control code
898200196
Dimensions
unknown
Extent
1 online resource (xvii, 303 pages)
Form of item
online
Isbn
9781849737593
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other physical details
illustrations
http://library.link/vocab/ext/overdrive/overdriveId
31789781849737593
Specific material designation
remote
System control number
(OCoLC)898200196

Library Locations

    • Thomas Jefferson LibraryBorrow it
      1 University Blvd, St. Louis, MO, 63121, US
      38.710138 -90.311107
Processing Feedback ...