Mathematical models
Resource Information
The topic Mathematical models represents a specific aggregation or gathering of resources found in University of Missouri-St. Louis Libraries.
The Resource
Mathematical models
Resource Information
The topic Mathematical models represents a specific aggregation or gathering of resources found in University of Missouri-St. Louis Libraries.
- Label
- Mathematical models
A sample of Items that are about the Topic Mathematical models See All
Context
Context of Mathematical modelsFocus of
No resources found
No enriched resources found
- Mathematical models
- Mathematical models
- Mathematical models
- Mathematical models
- Mathematical models
- Mathematical models
- Mathematical models -- Case studies
- Mathematical models -- Congresses
- Mathematical models -- Congresses
- Mathematical models -- Data processing
- Mathematical models -- Data processing
- Mathematical models -- Dictionaries | Russian
- Mathematical models -- Handbooks, manuals, etc
- Mathematical models -- Industrial applications
- Mathematical models -- Miscellanea
- Mathematical models -- Periodicals
- Mathematical models -- Research
- Mathematical models -- Research
- Mathematical models -- Research -- United States -- Periodicals
- Mathematical models -- Social aspects
- Mathematical models -- Study and teaching
- Mathematical models -- Study and teaching
Subfocus of
No resources found
No enriched resources found
- AIDS (Disease) -- Mathematical models
- AIDS (Disease) -- Mathematical models
- Abies magnifica -- California -- Growth | Mathematical models
- Abies magnifica -- Oregon -- Growth | Mathematical models
- Absorption -- Mathematical models
- Absorption -- Mathematical models
- Academic achievement -- United States -- Mathematical models
- Access to airports -- Mathematical models
- Accounting -- Decision making | Mathematical models
- Accounting -- Mathematical models
- Accounting -- Mathematical models
- Accounting -- Mathematical models -- Periodicals
- Accounting -- Psychological aspects | Mathematical models
- Achievement tests -- Mathematical models
- Acid deposition -- Environmental aspects -- United States -- Mathematical models
- Acid deposition -- Mathematical models
- Acid deposition -- Rocky Mountains -- Mathematical models
- Acid deposition -- United States -- Mathematical models
- Acid mine drainage -- United States -- Mathematical models
- Acid pollution of rivers, lakes, etc. -- United States -- Mathematical models
- Acid pollution of rivers, lakes, etc. -- Wyoming | Medicine Bow National Forest -- Mathematical models
- Acid precipitation (Meteorology) -- United States -- Mathematical models
- Acid precipitation (Meteorology) -- Wyoming | Medicine Bow National Forest -- Mathematical models
- Acid rain -- Environmental aspects -- Asia -- Mathematical models
- Acid rain -- Rocky Mountains -- Mathematical models
- Acoustic surface waves -- Mathematical models
- Acoustical engineering -- Mathematical models
- Acoustical engineering -- Mathematical models
- Acoustical engineering -- Mathematical models -- Congresses
- Actin -- Identification | Mathematical models
- Actuators -- Mathematical models
- Adaptation (Biology) -- Mathematical models
- Adaptation (Biology) -- Mathematical models
- Adaptation (Biology) -- Mathematical models
- Adaptation (Physiology) -- Mathematical models
- Adaptive control systems -- Mathematical models
- Adaptive control systems -- Mathematical models
- Adaptive signal processing -- Mathematical models
- Adsorption -- Mathematical models
- Advertising -- Costs | Mathematical models
- Advertising -- Mathematical models
- Advertising media planning -- Mathematical models
- Aerodynamic load -- Mathematical models
- Aerodynamic noise -- Mathematical models
- Aerodynamics -- Mathematical models
- Aerodynamics -- Mathematical models
- Aerodynamics -- Mathematical models
- Aerodynamics -- Mathematical models -- Congresses
- Aerodynamics, Supersonic -- Mathematical models
- Aerodynamics, Transonic -- Mathematical models
- Aeroelasticity -- Mathematical models
- Aeroelasticity -- Mathematical models
- Aeronautics, Commercial -- Mathematical models
- Aeronautics, Commercial -- Passenger traffic | Mathematical models
- Aeronautics, Commercial -- Passenger traffic | Mathematical models
- Aeronautics, Military -- Mathematical models
- Aerosols, Radioactive -- Mathematical models -- Handbooks, manuals, etc
- Aerosols, Radioactive -- Safety measures | Mathematical models
- Africa -- Economic policy | Mathematical models
- African Americans -- Housing | Mathematical models
- Age-structured populations -- Mathematical models
- Aggregates (Building materials) -- Testing | Mathematical models
- Agricultural credit -- Mathematical models
- Agricultural credit -- Mathematical models
- Agricultural innovations -- Mathematical models
- Agricultural innovations -- United States -- Mathematical models
- Agricultural machinery -- United States -- Replacement | Mathematical models
- Agricultural pollution -- Environmental aspects | Mathematical models
- Agricultural price supports -- United States -- Mathematical models
- Agricultural prices -- Economic aspects | Mathematical models
- Agricultural prices -- Mathematical models
- Agricultural prices -- Mathematical models
- Agricultural prices -- United States -- Forecasting | Mathematical models
- Agricultural prices -- United States -- Mathematical models
- Agricultural productivity -- China -- Mathematical models
- Agricultural productivity -- Mathematical models
- Agricultural productivity -- Regional disparities | Mathematical models
- Agricultural productivity -- United States -- Forecasting | Mathematical models
- Agricultural productivity -- United States -- Mathematical models
- Agricultural subsidies -- Mathematical models
- Agriculture -- Developing countries -- Mathematical models
- Agriculture -- Economic aspects -- England -- Mathematical models
- Agriculture -- Economic aspects -- India | Punjab -- Mathematical models
- Agriculture -- Economic aspects -- Southern States -- Mathematical models
- Agriculture -- Economic aspects -- United States -- Decision making | Mathematical models -- Congresses
- Agriculture -- Economic aspects -- United States -- Mathematical models
- Agriculture -- Economic aspects -- United States -- Mathematical models -- Congresses
- Agriculture -- Economic aspects -- United States -- Mathematical models -- Statistics
- Agriculture -- Economic aspects | Mathematical models
- Agriculture -- Economic aspects | Mathematical models
- Agriculture -- Economic aspects | Mathematical models -- Congresses
- Agriculture -- Environmental aspects -- United States -- Mathematical models
- Agriculture -- Mathematical models -- India
- Agriculture -- Research | Economic aspects | Mathematical models
- Agriculture -- United States -- Mathematical models
- Agriculture and state -- Developing countries -- Mathematical models -- Congresses
- Agriculture and state -- Mathematical models
- Agriculture and state -- Mathematical models
- Agriculture and state -- United States -- Mathematical models
- Agrobiodiversity conservation -- Mathematical models
- Air -- Pollution -- Great Lakes Region (North America) -- Mathematical models
- Air -- Pollution -- Northeastern States -- Mathematical models
- Air -- Pollution -- United States -- Mathematical models
- Air -- Pollution -- United States -- Mathematical models -- Handbooks, manuals, etc
- Air -- Pollution -- United States -- Measurement | Mathematical models
- Air -- Pollution | Economic aspects -- Poland -- Mathematical models
- Air -- Pollution | Economic aspects -- United States -- Mathematical models
- Air -- Pollution | Economic aspects | Mathematical models
- Air -- Pollution | Mathematical models
- Air -- Pollution | Mathematical models
- Air -- Pollution | Mathematical models
- Air -- Pollution | Mathematical models -- Congresses
- Air -- Pollution | Mathematical models -- Handbooks, manuals, etc
- Air -- Pollution | Mathematical models | Computer programs -- Handbooks, manuals, etc
- Air -- Pollution | Mathematical models | History
- Air -- Pollution | Measurement | Mathematical models
- Air -- Pollution | Measurement | Mathematical models
- Air -- Pollution | Physiological effect | Mathematical models
- Air -- Pollution | Risk assessment | Mathematical models | Evaluation
- Air -- Pollution | Testing | Mathematical models -- Handbooks, manuals, etc
- Air defenses -- Mathematical models
- Air flow -- Forecasting | Mathematical models
- Air flow -- Mathematical models
- Air flow -- Measurement | Mathematical models
- Air guns -- Mathematical models
- Air quality -- Mathematical models
- Air quality -- Mathematical models
- Air quality -- Mathematical models -- Handbooks, manuals, etc
- Air quality -- Mathematical models | Evaluation
- Air quality -- Montana -- Mathematical models
- Air quality -- Northeastern States -- Mathematical models
- Air quality -- United States -- Mathematical models
- Air quality -- United States -- Mathematical models -- Periodicals
- Air quality -- United States -- Mathematical models | History
- Air quality management -- Mathematical models
- Air quality management -- United States -- Mathematical models
- Air quality management -- United States -- Mathematical models | Evaluation
- Air traffic control -- Mathematical models
- Air traffic controllers -- Testing | Mathematical models
- Air warfare -- Mathematical models
- Aircraft accidents -- Mathematical models
- Aircraft cabins -- Noise | Mathematical models
- Aircraft exhaust emissions -- Mathematical models
- Airframes -- Mathematical models
- Airframes -- Mathematical models
- Airframes -- Mathematical models
- Airplanes -- Control systems | Mathematical models
- Airplanes -- Control systems | Mathematical models
- Airplanes -- Crashworthiness | Mathematical models
- Airplanes -- Flight testing | Mathematical models
- Airplanes -- Flight testing | Mathematical models
- Airplanes -- Fuel consumption | Mathematical models
- Airplanes -- Handling characteristics | Mathematical models
- Airplanes -- Jet propulsion | Mathematical models
- Airplanes -- Landing | Mathematical models
- Airplanes -- Motors | Mathematical models
- Airplanes -- Noise | Mathematical models
- Airplanes -- Ownership | Mathematical models
- Airplanes -- Piloting | Mathematical models
- Airplanes -- Purchasing | Mathematical models
- Airplanes -- Tires | Mathematical models -- Congresses
- Airplanes -- Turbofan engines | Mathematical models
- Airplanes -- Wings | Design and construction | Mathematical models
- Airplanes -- Wings | Mathematical models
- Airplanes -- Wings, Swept-back | Mathematical models
- Airplanes, Military -- Maintenance and repair | Mathematical models
- Airplanes, Military -- United States -- Maintenance and repair | Mathematical models
- Alcoholic beverage industry -- Law and legislation | Mathematical models
- Aleutian Basin -- Environmental conditions | Mathematical models
- Alliances -- Mathematical models
- Alloys -- Mathematical models
- Alluvial streams -- Mathematical models
- Alluvial streams -- Mathematical models
- Altruistic behavior in animals -- Mathematical models
- Aluminum alloys -- Fatigue | Mathematical models
- Ammonia -- Environmental aspects | Mathematical models
- Analysis (Philosophy) -- Mathematical models
- Analysis of covariance -- Mathematical models
- Analysis of variance -- Mathematical models
- Animal behavior -- Computer simulation | Mathematical models -- Case studies
- Animal behavior -- Mathematical models
- Animal behavior -- Mathematical models
- Animal behavior -- Mathematical models
- Animal colonies -- Mathematical models
- Animal ecology -- Mathematical models
- Animal ecology -- Mathematical models
- Animal flight -- Mathematical models
- Animal genetics -- Mathematical models
- Animal locomotion -- Mathematical models
- Animal populations -- Estimates | Mathematical models
- Animal populations -- Mathematical models
- Animal populations -- Mathematical models
- Animal populations -- Mathematical models -- Congresses
- Animal societies -- Mathematical models
- Anisotropy -- Mathematical models
- Anisotropy -- Mathematical models
- Annuities -- Mathematical models
- Annuities -- Mathematical models
- Antenna arrays -- Mathematical models
- Antenna arrays -- Mathematical models
- Antenna radiation patterns -- Mathematical models
- Antennas (Electronics) -- Mathematical models
- Ants -- Behavior | Mathematical models
- Ants -- Behavior | Mathematical models
- Aquatic ecology -- Mathematical models
- Aqueducts -- California | San Diego -- Mathematical models
- Aquifer storage recovery -- Florida | Saint Petersburg -- Mathematical models
- Aquifers -- Florida -- Mathematical models
- Aquifers -- Georgia -- Mathematical models
- Aquifers -- Georgia | Savannah Region -- Mathematical models
- Aquifers -- High Plains (U.S.) -- Mathematical models
- Aquifers -- Idaho -- Mathematical models
- Aquifers -- Indiana | Vincennes -- Mathematical models
- Aquifers -- Kansas -- Mathematical models
- Aquifers -- Massachusetts | Cape Cod Region -- Mathematical models
- Aquifers -- Mathematical models
- Aquifers -- Mathematical models
- Aquifers -- Minnesota | Grand Rapids Region -- Mathematical models
- Aquifers -- Minnesota | Michigan | Grand Rapids Region -- Mathematical models
- Aquifers -- Mississippi -- Mathematical models
- Aquifers -- Montana | Judith Basin -- Mathematical models
- Aquifers -- New Jersey -- Mathematical models
- Aquifers -- New Jersey | Kenvil Region -- Mathematical models
- Aquifers -- New Mexico | Albuquerque -- Mathematical models
- Aquifers -- Northeastern States -- Mathematical models
- Aquifers -- Oklahoma -- Mathematical models
- Aquifers -- Ozark Mountains -- Water-supply | Mathematical models
- Aquifers -- Pennsylvania | Lansdale Region -- Mathematical models
- Aquifers -- Rhode Island -- Mathematical models
- Aquifers -- South Carolina -- Mathematical models
- Aquifers -- South Dakota | Brown County -- Mathematical models
- Aquifers -- Southern States -- Mathematical models
- Aquifers -- Texas | San Antonio Region -- Mathematical models
- Aquifers -- West Virginia -- Mathematical models
- Aquifers -- Wyoming -- Mathematical models
- Arbitrage -- Mathematical models
- Arbitrage -- Mathematical models
- Arc-jet rocket engines -- Mathematical models
- Archaeology -- Mathematical models
- Archaeology -- Mathematical models
- Arkansas River -- Mathematical models
- Arms control -- Mathematical models
- Arms control -- Mathematical models -- Congresses
- Arms race -- Mathematical models
- Aromatic amines -- Environmental aspects | Mathematical models
- Arrhythmia -- Mathematical models -- Congresses
- Artificial groundwater recharge -- Arkansas -- Mathematical models
- Artificial groundwater recharge -- California | San Bernardino -- Mathematical models
- Artificial groundwater recharge -- Connecticut -- Mathematical models
- Artificial groundwater recharge -- Florida | Saint Petersburg -- Mathematical models
- Artificial groundwater recharge -- Maine | Oxford County -- Mathematical models
- Artificial groundwater recharge -- Mathematical models
- Artificial groundwater recharge -- Mathematical models
- Artificial groundwater recharge -- Minnesota -- Mathematical models
- Artificial groundwater recharge -- Minnesota | Rochester -- Mathematical models
- Artificial groundwater recharge -- New York (State) | Westchester County -- Mathematical models
- Artificial intelligence -- Mathematical models
- Artificial intelligence -- Mathematical models
- Artificial intelligence -- Mathematical models -- Congresses
- Artificial life -- Mathematical models
- Artificial satellites -- Orbits | Mathematical models
- Artificial satellites -- Orbits | Mathematical models
- Arts -- Economic aspects | Mathematical models
- Asia -- Economic policy | Mathematical models
- Asphalt concrete -- Cracking | Mathematical models
- Asphalt concrete -- Mechanical properties | Mathematical models
- Asset specificity -- Mathematical models
- Astronauts -- Nutrition | Mathematical models
- Asynchronous transfer mode -- Mathematical models
- Atmosphere -- Mathematical models
- Atmosphere -- Mathematical models
- Atmospheric carbon dioxide -- United States -- Measurement | Mathematical models
- Atmospheric circulation -- Mathematical models
- Atmospheric circulation -- Mathematical models
- Atmospheric circulation -- New Mexico -- Mathematical models
- Atmospheric density -- Mathematical models -- Congresses
- Atmospheric deposition -- Mathematical models
- Atmospheric diffusion -- Florida | Merritt Island -- Mathematical models
- Atmospheric diffusion -- Idaho -- Mathematical models
- Atmospheric diffusion -- Mathematical models
- Atmospheric diffusion -- Mathematical models
- Atmospheric diffusion -- Mathematical models
- Atmospheric diffusion -- United States -- Mathematical models
- Atmospheric ionization -- Mathematical models
- Atmospheric ozone -- Measurement | Mathematical models -- Periodicals
- Atmospheric physics -- Mathematical models
- Atmospheric physics -- Mathematical models
- Atmospheric physics -- Mathematical models | Data processing
- Atmospheric physics -- Mathematical models | Data processing -- Congresses
- Atmospheric pressure -- Mathematical models
- Atmospheric pressure -- United States -- Forecasting | Mathematical models | Evaluation
- Atmospheric radiation -- Mathematical models
- Atmospheric temperature -- Mathematical models
- Atmospheric temperature -- United States -- Forecasting | Mathematical models | Evaluation
- Atmospheric thermodynamics -- Mathematical models
- Atmospheric turbidity -- Mathematical models
- Atmospheric turbulence -- Mathematical models
- Atmospheric turbulence -- Mathematical models
- Atmospheric turbulence -- Mathematical models
- Atmospheric turbulence -- Measurement | Mathematical models
- Atmospheric waves -- Mathematical models
- Atomic orbitals -- Mathematical models
- Atomic structure -- Mathematical models
- Atomic structure -- Mathematical models
- Atrazine -- Environmental aspects -- United States -- Mathematical models
- Atrazine -- Environmental aspects | Mathematical models
- Attention -- Mathematical models
- Attention -- Mathematical models
- Attics -- Heating and ventilation | Mathematical models
- Attitude change -- Mathematical models
- Auctions -- Mathematical models
- Auctions -- Mathematical models
- Auroras -- Mathematical models
- Australia -- Emigration and immigration | Mathematical models
- Austria -- Economic conditions -- 1945- -- Mathematical models
- Automatic control -- Mathematical models
- Automatic control -- Mathematical models
- Automatic control -- Mathematical models -- Congresses
- Automatic machinery -- Mathematical models
- Automatic machinery -- Mathematical models
- Automobile driving -- Braking | Mathematical models
- Automobile industry and trade -- Netherlands -- Mathematical models
- Automobiles -- Collision avoidance systems | Mathematical models
- Automobiles -- Fuel consumption | Mathematical models
- Automobiles -- Fuel consumption | Mathematical models
- Automobiles -- Motors | Exhaust gas -- United States -- Mathematical models
- Automobiles -- Motors | Exhaust gas | Environmental aspects -- United States -- Mathematical models | Evaluation
- Automobiles -- Motors | Exhaust gas | Mathematical models
- Automobiles -- Motors | Exhaust gas | Mathematical models
- Automobiles -- Purchasing | Mathematical models
- Automobiles -- Purchasing | Mathematical models
- Automobiles -- Purchasing | Mathematical models
- Automobiles -- Seat belts | Evaluation | Mathematical models
- Automobiles -- United States -- Fuel consumption | Mathematical models
- Automobiles -- United States -- Seat belts | Effectiveness | Mathematical models
- Autonomous robots -- Mathematical models
- Avalanches -- Mathematical models
- Axial flow -- Mathematical models
- Backscattering -- Mathematical models
- Backwater -- Mathematical models
- Bacteria -- Physiology | Mathematical models
- Bacterial pollution of water -- Ohio -- Mathematical models
- Balance of payments -- Japan -- Mathematical models
- Balance of payments -- Mathematical models
- Balance of payments -- Mathematical models
- Balance of payments -- United States -- Mathematical models
- Balance of power -- Mathematical models
- Ball-bearings -- Mathematical models
- Ballistics -- Mathematical models
- Bank capital -- Evaluation | Mathematical models
- Bank failures -- Effect of deposit insurance on | Mathematical models
- Bank holding companies -- United States -- Mathematical models
- Bank investments -- Mathematical models
- Bank investments -- New England -- Mathematical models
- Bank loans -- Mathematical models
- Bank management -- Mathematical models
- Bank management -- Mathematical models
- Bank mergers -- United States -- Mathematical models
- Bankruptcy -- Forecasting | Mathematical models
- Banks and banking -- Mathematical models
- Banks and banking -- Mathematical models
- Banks and banking, International -- Mathematical models
- Barrier island ecology -- Alabama | Dauphin Island -- Mathematical models
- Barriers to entry (Industrial organization) -- Mathematical models
- Base flow (Hydrology) -- Virginia -- Mathematical models
- Basic needs -- Developing countries -- Mathematical models -- Congresses
- Basins (Geology) -- Colorado | Denver Metropolitan Area -- Mathematical models
- Bathymetric maps -- Mathematical models | Data processing
- Bearings (Machinery) -- Vibration | Mathematical models
- Beef -- Prices | Mathematical models
- Behavioral scientists -- Supply and demand | Mathematical models
- Behaviorism (Psychology) -- Mathematical models -- Congresses
- Bicycle lanes -- Planning | Mathematical models
- Big business -- United States -- Mathematical models
- Binary systems (Metallurgy) -- Absorption and adsorption | Mathematical models
- Binary systems (Metallurgy) -- Reactivity | Mathematical models
- Binders (Materials) -- Effect of temperature on | Mathematical models
- Binders (Materials) -- Testing | Mathematical models
- Biochemical engineering -- Mathematical models
- Biochemical engineering -- Mathematical models
- Biochemical oxygen demand -- Catawba River (N.C. and S.C.) -- Mathematical models
- Biochemical oxygen demand -- Mathematical models
- Biochemical oxygen demand -- Mathematical models
- Biochemistry -- Mathematical models
- Biochemistry -- Mathematical models
- Biochemistry -- Mathematical models
- Biocomplexity -- Mathematical models
- Biocomputers -- Mathematical models
- Biodegradation -- Mathematical models
- Biodegradation -- Mathematical models
- Biodegradation -- United States -- Mathematical models
- Biodiversity -- Mathematical models
- Biodiversity -- Mathematical models
- Biodiversity -- Mathematical models
- Bioenergetics -- Bering Sea -- Mathematical models
- Bioenergetics -- Mathematical models
- Bioenergetics -- Mathematical models
- Biogeography -- Mathematical models
- Biogeography -- Mathematical models
- Bioinformatics -- Mathematical models
- Biological control systems -- Mathematical models
- Biological control systems -- Mathematical models
- Biological invasions -- Mathematical models
- Biological invasions -- Mathematical models
- Biological rhythms -- Mathematical models
- Biological systems -- Mathematical models
- Biological systems -- Mathematical models
- Biological transport -- Mathematical models
- Biology -- Mathematical models
- Biology -- Mathematical models
- Biology -- Mathematical models -- Congresses
- Biology, Economic -- Mathematical models
- Biomass -- Alaska -- Mathematical models
- Biomass -- Utilization | Mathematical models
- Biomass conversion -- Mathematical models
- Biomass energy -- Mathematical models -- Handbooks, manuals, etc
- Biomass energy industries -- Economic aspects | Mathematical models
- Biomathematics -- Mathematical models
- Biomechanics -- Mathematical models
- Biomedical engineering -- Mathematical models
- Biomedical engineering -- Mathematical models
- Biomedical engineering -- Mathematical models -- Congresses
- Biomolecules -- Structure | Mathematical models
- Biomolecules -- Structure | Mathematical models
- Biophysics -- Mathematical models
- Biophysics -- Mathematical models
- Bioremediation -- Mathematical models
- Bioremediation -- Mathematical models
- Biotechnology -- Mathematical models
- Biotechnology -- Mathematical models -- Congresses
- Bioterrorism -- Mathematical models
- Bioterrorism -- Mathematical models -- Congresses
- Biotic communities -- Koocanusa, Lake (B.C. and Mont.) -- Mathematical models
- Biotic communities -- Mathematical models
- Biotic communities -- Mathematical models
- Biotic communities -- Mathematical models -- Congresses
- Biotic communities -- Yukon River Watershed (Yukon and Alaska) -- Mathematical models
- Bipolar transistors -- Mathematical models
- Bipolar transistors -- Mathematical models
- Bird populations -- Mathematical models
- Bird populations -- Southern States -- Mathematical models
- Birds -- Habitat -- Black Hills (S.D. and Wyo.) -- Mathematical models
- Birds -- Habitat -- South Dakota -- Mathematical models
- Birds -- Habitat -- United States -- Mathematical models
- Bistatic radar -- Mathematical models
- Bistatic radar -- Mathematical models
- Black holes (Astronomy) -- Mathematical models
- Black-capped chickadee -- Habitat | Mathematical models
- Blades -- Design and construction | Mathematical models
- Blast effect -- Mathematical models
- Blood alcohol -- Mathematical models
- Blood flow -- Measurement | Mathematical models
- Boiling water reactors -- Mathematical models | Computer programs -- Handbooks, manuals, etc
- Bonds -- Mathematical models
- Bonds -- Mathematical models
- Bonds -- Prices | Mathematical models
- Bonds -- Prices | Mathematical models
- Bonds -- Prices | Mathematical models
- Bonds -- Valuation | Mathematical models
- Bonds -- Valuation | Mathematical models
- Borderlands -- Rome -- Mathematical models
- Bosons -- Mathematical models
- Bosons -- Mathematical models -- Congresses
- Boundary layer (Meteorology) -- Mathematical models
- Boundary layer -- Mathematical models
- Brain -- Mathematical models
- Brain -- Mathematical models
- Brain -- Mathematical models -- Congresses
- Branding (Marketing) -- Mathematical models
- Brazil -- Economic policy | Mathematical models
- Bridges -- Abutments | Mathematical models
- Bridges -- Bearings | Mathematical models
- Bridges -- Design and construction | Mathematical models
- Bridges -- Earthquake effects | Mathematical models
- Bridges -- Live loads -- United States -- Mathematical models
- Bridges -- Live loads | Mathematical models
- Broadband communication systems -- Mathematical models
- Broadband communication systems -- Mathematical models
- Broadcast advertising -- United States -- Mathematical models
- Broadcasting -- United States -- Mathematical models
- Brokers -- Mathematical models
- Brownian motion processes -- Mathematical models
- Brownian movements -- Mathematical models
- Bubbles -- Mathematical models
- Bubbles -- Mathematical models
- Buckling (Mechanics) -- Mathematical models
- Budget -- United States -- Mathematical models
- Budget deficits -- Mathematical models
- Budget deficits -- United States -- Mathematical models
- Building failures -- Mathematical models
- Building materials -- Energy conservation | Mathematical models
- Building materials -- Mechanical properties | Mathematical models
- Building, Fireproof -- Mathematical models
- Buildings -- Deterioration | Mathematical models
- Buildings -- Earthquake effects | Mathematical models
- Buildings -- Earthquake effects | Mathematical models
- Buildings -- Energy conservation | Mathematical models
- Buildings -- Location | Mathematical models -- Periodicals
- Buildings -- Thermal properties | Mathematical models
- Buildings, Reinforced concrete -- Earthquake effects | Mathematical models
- Bureaucracy -- Mathematical models
- Bus lines -- Fares | Mathematical models
- Bus lines -- Mathematical models
- Bus lines -- Ridership | Mathematical models
- Business -- Case studies -- Mathematical models
- Business -- Mathematical models
- Business -- Mathematical models
- Business -- Mathematical models
- Business cycles -- Effect of monetary policy on | Mathematical models
- Business cycles -- Mathematical models
- Business cycles -- Mathematical models
- Business cycles -- Mathematical models -- Congresses
- Business cycles -- Mathematical models | History
- Business cycles -- United States -- Mathematical models
- Business enterprises -- Finance | Mathematical models
- Business enterprises -- Mathematical models
- Business enterprises -- United States -- Finance | Mathematical models
- Business failures -- Mathematical models
- Business forecasting -- Accounting | Mathematical models
- Business forecasting -- Mathematical models
- Business forecasting -- Mathematical models
- Business logistics -- Mathematical models
- Business logistics -- Mathematical models
- Business losses -- Mathematical models
- Business planning -- Mathematical models
- Calcium -- Metabolism | Mathematical models
- Calcium -- Physiological effect | Mathematical models
- Calcium -- Physiological transport | Mathematical models
- Calibration -- Mathematical models
- Canada -- Economic conditions | Mathematical models
- Canada -- Emigration and immigration | Mathematical models
- Canals -- Florida | Miami-Dade County -- Mathematical models
- Cancer -- Mathematical models
- Cancer -- Mathematical models
- Cancer cells -- Mathematical models
- Capacitors -- Mathematical models
- Capital -- Mathematical models
- Capital -- United States -- Mathematical models
- Capital budget -- Mathematical models
- Capital investments -- Evaluation | Mathematical models
- Capital investments -- Evaluation | Mathematical models
- Capital investments -- Mathematical models
- Capital market -- Mathematical models
- Capital market -- Mathematical models
- Capital market -- Mathematical models
- Capital movements -- Mathematical models
- Capital movements -- United States -- Mathematical models
- Capitalism -- Mathematical models
- Capitalism -- Mathematical models
- Car pools -- Mathematical models
- Car pools -- Mathematical models
- Carbon cycle (Biogeochemistry) -- Mathematical models
- Carbon cycle (Biogeochemistry) -- Mathematical models
- Carbon cycle (Biogeochemistry) -- Mathematical models -- Congresses
- Carbon cycle (Biogeochemistry) -- United States -- Measurement | Mathematical models
- Carbon dioxide mitigation -- United States -- Mathematical models
- Carbon monoxide -- Synthesis | Mathematical models
- Carbon sequestration -- Mathematical models
- Carbon sequestration -- United States -- Mathematical models
- Carcinogenesis -- Mathematical models
- Carcinogenesis -- Mathematical models -- Congresses
- Cardiopulmonary system -- Mathematical models
- Cardiovascular system -- Diseases | Psychosomatic aspects | Mathematical models
- Cascades (Fluid dynamics) -- Mathematical models
- Cash flow -- Mathematical models
- Cash management -- Mathematical models
- Catalysis -- Mathematical models
- Catalysis -- Mathematical models
- Catalysis -- Mathematical models -- Congresses
- Cavity resonators -- Mathematical models
- Ceilings -- Thermal properties | Mathematical models
- Cell aggregation -- Mathematical models
- Cell aggregation -- Mathematical models
- Cell aggregation -- Mathematical models
- Cell organelles -- Identification -- Mathematical models
- Cell proliferation -- Mathematical models
- Cell proliferation -- Mathematical models -- Congresses
- Cells -- Growth | Mathematical models
- Cells -- Measurement | Mathematical models
- Cells -- Motility | Mathematical models
- Cellular automata -- Mathematical models
- Cellular automata -- Mathematical models
- Cellular signal transduction -- Mathematical models
- Cement -- Testing | Mathematical models
- Central America -- Economic conditions | Mathematical models
- Central business districts -- United States -- Mathematical models
- Central planning -- Soviet Union -- Mathematical models
- Cerebellum -- Mathematical models
- Cerebral cortex -- Mathematical models -- Congresses
- Chain stores -- Management | Mathematical models
- Change (Psychology) -- Mathematical models
- Channels (Hydraulic engineering) -- Mathematical models
- Channels (Hydraulic engineering) -- Mathematical models
- Channels (Hydraulic engineering) -- Mathematical models -- Congresses
- Chaotic behavior in systems -- Mathematical models
- Chaotic behavior in systems -- Mathematical models
- Chaotic behavior in systems -- Mathematical models -- Congresses
- Charge density waves -- Mathematical models
- Charge transfer -- Mathematical models
- Chattahoochee River -- Mathematical models
- Cheese -- Purchasing -- United States -- Mathematical models
- Chemical bonds -- Mathematical models
- Chemical engineering -- Mathematical models
- Chemical engineering -- Mathematical models
- Chemical engineering -- Mathematical models -- Congresses
- Chemical kinetics -- Mathematical models
- Chemical kinetics -- Mathematical models
- Chemical process control -- Mathematical models
- Chemical process control -- Mathematical models
- Chemical processes -- Mathematical models
- Chemical processes -- Mathematical models
- Chemical reaction, Conditions and laws of -- Mathematical models
- Chemical reactions -- Mathematical models
- Chemical reactions -- Mathematical models
- Chemical reactors -- Fluid dynamics | Mathematical models
- Chemical reactors -- Mathematical models
- Chemical reactors -- Mathematical models -- Congresses
- Chemical spills -- Environmental aspects | Mathematical models
- Chemical structure -- Mathematical models
- Chemical vapor deposition -- Mathematical models
- Chemical vapor deposition -- Mathematical models
- Chemistry, Organic -- Mathematical models
- Chemistry, Physical and theoretical -- Mathematical models
- Chemistry, Physical and theoretical -- Mathematical models
- Child health services -- Developing countries -- Cost effectiveness | Mathematical models
- Child restraint systems in automobiles -- Evaluation | Mathematical models
- Child welfare -- Mathematical models
- Children -- Developing countries -- Mortality | Mathematical models
- Children -- Services for | Mathematical models
- China -- Economic conditions | Mathematical models
- Chlorine -- Environmental aspects | Mathematical models
- Choice (Psychology) -- Mathematical models
- Choice (Psychology) -- Mathematical models
- Choice of transportation -- Mathematical models
- Choice of transportation -- Mathematical models
- Choice of transportation -- Mathematical models -- Congresses
- Choice of transportation -- Mathematical models | Congresses
- Choice of transportation -- United States -- Mathematical models | Planning
- Chromosome replication -- Mathematical models
- Circadian rhythms -- Mathematical models
- Cities and towns -- Developing countries -- Mathematical models
- Cities and towns -- Growth | Mathematical models
- Cities and towns -- Growth | Mathematical models
- Cities and towns -- Mathematical models
- Cities and towns -- Mathematical models
- Cities and towns -- Mathematical models -- Congresses
- City and town life -- Mathematical models
- City planning -- Developing countries -- Mathematical models
- City planning -- Environmental aspects | Mathematical models
- City planning -- Mathematical models
- City planning -- Mathematical models -- Congresses
- City planning -- United States -- Mathematical models
- City planning -- Wisconsin -- Mathematical models
- Clear air turbulence -- Mathematical models
- Climate change mitigation -- Mathematical models
- Climatic changes -- America -- Mathematical models -- Periodicals
- Climatic changes -- California, Southern -- Mathematical models
- Climatic changes -- Forecasting | Mathematical models
- Climatic changes -- Hindu Kush-Himalayan Region -- Mathematical models
- Climatic changes -- Mathematical models
- Climatic changes -- Mathematical models
- Climatic changes -- Mathematical models
- Climatic changes -- Mathematical models -- Congresses
- Climatic changes -- North America -- Forecasting | Mathematical models
- Climatic changes -- North America -- Mathematical models
- Climatic changes -- Southern States -- Mathematical models
- Climatic changes -- United States -- Mathematical models
- Climatic changes -- West (U.S.) -- Mathematical models
- Climatic extremes -- Mathematical models
- Climatology -- Mathematical models
- Climatology -- Mathematical models
- Climatology -- Mathematical models
- Climatology -- Mathematical models
- Climatology -- Mathematical models -- Periodicals
- Climatology -- United States -- Mathematical models
- Closed ecological systems -- Mathematical models
- Cloud physics -- Mathematical models
- Cloud physics -- Mathematical models -- Congresses
- Cluster analysis -- Mathematical models
- Coal -- Combustion | Environmental aspects | Mathematical models
- Coal -- Combustion | Mathematical models
- Coal mines and mining -- Dust control | Mathematical models
- Coal mines and mining -- Environmental aspects -- West Virginia -- Mathematical models
- Coal mines and mining -- Safety measures | Mathematical models
- Coal trade -- Mathematical models
- Coal trade -- United States -- Mathematical models
- Coal-fired power plants -- Environmental aspects | Mathematical models
- Coast changes -- Alabama | Dauphin Island -- Mathematical models
- Coast changes -- Mathematical models
- Coast changes -- Mathematical models
- Coast changes -- Mathematical models -- Congresses
- Coastal ecology -- Louisiana -- Mathematical models
- Coastal engineering -- Mathematical models
- Coastal engineering -- Mathematical models
- Coastal plains -- Southern States -- Mathematical models
- Coasts -- Mathematical models
- Coasts -- Mathematical models
- Coasts -- Mathematical models -- Congresses
- Coasts -- Oregon -- Mathematical models
- Coastwise shipping -- Russia, Northern -- Mathematical models
- Coaxial cables -- Materials | Testing | Mathematical models
- Coaxial cables -- Testing | Mathematical models
- Cobalt -- Recycling | Mathematical models
- Cobalt industry -- Mathematical models
- Cocaine industry -- Mathematical models
- Coevolution -- Mathematical models
- Coffee industry -- Côte d'Ivoire -- Mathematical models
- Cognition -- Mathematical models
- Cognition -- Mathematical models
- Cognition in children -- Mathematical models | Congresses
- Cognitive radio networks -- Mathematical models
- Collective bargaining -- Mathematical models
- Collective bargaining -- Mathematical models
- Collective behavior -- Economic aspects -- United States -- Mathematical models
- Collective behavior -- Mathematical models
- Collisions (Nuclear physics) -- Mathematical models
- Colloids -- Diffusion rate | Mathematical models
- Colloids -- Mathematical models
- Columbia Glacier (Alaska) -- Mathematical models
- Columns -- Testing | Mathematical models
- Combat -- Mathematical models
- Combustion -- Mathematical models
- Combustion -- Mathematical models
- Combustion -- Mathematical models
- Combustion -- Mathematical models -- Handbooks, manuals, etc
- Combustion -- Mathematical models | Data processing
- Combustion -- Mathematical models | Handbooks, manuals, etc
- Combustion -- United States -- Mathematical models
- Combustion chambers -- Mathematical models
- Combustion deposits in engines -- Mathematical models
- Combustion engineering -- Mathematical models | Congresses
- Combustion gases -- Synthesis | Mathematical models
- Combustion, Spontaneous -- Mathematical models
- Command of troops -- Mathematical models
- Commerce -- Mathematical models
- Commerce -- Mathematical models
- Commerce -- Mathematical models -- Congresses
- Commercial buildings -- Energy consumption | Mathematical models
- Commercial geography -- Mathematical models
- Commercial geography -- Mathematical models
- Commercial policy -- Mathematical models
- Commercial policy -- Mathematical models
- Commercial policy -- Mathematical models -- Congresses
- Commercial products -- Latin America -- Mathematical models -- Congresses
- Commercial products -- Mathematical models
- Committees -- Mathematical models
- Commodity control -- Mathematical models
- Commodity control -- Mathematical models -- Congresses
- Commodity exchanges -- Mathematical models
- Commodity exchanges -- Mathematical models
- Commodity futures -- Mathematical models
- Commodity futures -- Mathematical models
- Communicable diseases -- Epidemiology | Mathematical models
- Communicable diseases -- Epidemiology | Mathematical models
- Communicable diseases -- Mathematical models
- Communicable diseases -- Mathematical models
- Communicable diseases -- Transmission | Mathematical models
- Communication -- Mathematical models
- Commuters -- Massachusetts | Boston Metropolitan Area -- Mathematical models
- Compacting -- Mathematical models
- Comparative advantage (International trade) -- Mathematical models
- Competition (Biology) -- Mathematical models
- Competition -- Government policy | Mathematical models
- Competition -- Mathematical models
- Competition -- Mathematical models
- Competition -- United States -- Mathematical models
- Competition, Imperfect -- Mathematical models
- Competition, Imperfect -- Mathematical models
- Competition, Unfair -- Mathematical models
- Component software -- Mathematical models
- Composite materials -- Bonding | Mathematical models
- Composite materials -- Cracking | Mathematical models
- Composite materials -- Defects | Mathematical models
- Composite materials -- Electric properties | Mathematical models
- Composite materials -- Fatigue | Mathematical models
- Composite materials -- Magnetic properties | Mathematical models
- Composite materials -- Mathematical models
- Composite materials -- Mathematical models
- Composite materials -- Moisture | Mathematical models
- Composite materials -- Noise | Mathematical models
- Compound semiconductors -- Mathematical models
- Compound semiconductors -- Mathematical models
- Comprehension (Theory of knowledge) -- Mathematical models -- Congresses
- Compressed air -- Mathematical models
- Compressibility -- Mathematical models
- Computational fluid dynamics -- Mathematical models
- Computational intelligence -- Mathematical models
- Computational neuroscience -- Computer simulation | Mathematical models -- Case studies
- Computational neuroscience -- Mathematical models
- Computer architecture -- Mathematical models
- Computer networks -- Design and construction | Mathematical models
- Computer networks -- Mathematical models
- Computer networks -- Mathematical models
- Computer networks -- Mathematical models -- Congresses
- Computer networks -- Security measures | Mathematical models
- Computer programs -- Mathematical models
- Computer science -- Mathematical models
- Computer science -- Mathematical models
- Computer science -- Mathematical models -- Handbooks, manuals, etc
- Computer security -- Mathematical models
- Computer software -- Mathematical models
- Computer software -- Mathematical models
- Computer software -- Mathematical models
- Computer storage devices -- Mathematical models
- Computer storage devices -- Mathematical models
- Computer system failures -- Mathematical models
- Computer systems -- Reliability | Mathematical models
- Computer vision -- Mathematical models
- Computer vision -- Mathematical models
- Computers -- Reliability | Mathematical models
- Concepts -- Mathematical models
- Concrete -- Additives | Mathematical models
- Concrete -- Deterioration | Mathematical models
- Concrete -- Drying | Mathematical models
- Concrete -- Effect of radiation on | Mathematical models
- Concrete -- Fracture | Mathematical models
- Concrete -- Mathematical models
- Concrete -- Mathematical models
- Concrete -- Mathematical models -- Handbooks, manuals, etc
- Concrete -- Permeability | Mathematical models
- Concrete bridges -- Cracking | Mathematical models
- Concrete bridges -- Effect of temperature on | Mathematical models
- Concrete bridges -- Floors | Design and construction | Mathematical models
- Concrete construction -- Deterioration -- United States -- Mathematical models
- Concrete construction -- Deterioration | Mathematical models
- Concrete panels -- Testing | Mathematical models
- Condensed matter -- Mathematical models
- Condensed matter -- Mathematical models
- Conditioned response -- Computer simulation | Mathematical models -- Case studies
- Conditioned response -- Mathematical models -- Congresses
- Cone -- Aerodynamics | Mathematical models
- Confidence intervals -- Mathematical models
- Conflict management -- Mathematical models
- Conformity -- Mathematical models
- Congestion pricing -- Mathematical models
- Congestion pricing -- Mathematical models
- Conglomerate corporations -- Management | Mathematical models
- Conifers -- Rocky Mountains -- Growth | Mathematical models
- Consciousness -- Mathematical models
- Conservation biology -- Mathematical models
- Conservation of natural resources -- Economic aspects | Mathematical models | Congresses
- Conservation of natural resources -- United States -- Mathematical models
- Consolidation and merger of corporations -- Great Britain -- Mathematical models
- Consolidation and merger of corporations -- Mathematical models
- Constrained optimization -- Mathematical models
- Constraints (Physics) -- Mathematical models
- Constraints (Physics) -- Mathematical models
- Construction industry -- Mathematical models
- Construction industry -- Mathematical models
- Consumer behavior -- Mathematical models
- Consumer behavior -- Mathematical models
- Consumer behavior -- United States -- Mathematical models
- Consumer credit -- Mathematical models
- Consumer price indexes -- United States -- Mathematical models
- Consumers -- Attitudes | Mathematical models
- Consumers -- Germany (West) -- Mathematical models
- Consumers -- Mathematical models
- Consumers -- Research | Mathematical models
- Consumers' preferences -- Mathematical models
- Consumers' preferences -- Mathematical models
- Consumers' preferences -- United States -- Mathematical models
- Consumption (Economics) -- Developing countries -- Mathematical models
- Consumption (Economics) -- Korea (North) -- Mathematical models
- Consumption (Economics) -- Mathematical models
- Consumption (Economics) -- Mathematical models
- Consumption (Economics) -- Mathematical models -- OECD countries
- Consumption (Economics) -- Soviet Union -- Mathematical models
- Consumption (Economics) -- United States -- Mathematical models
- Contact angle -- Mathematical models
- Containers -- Design and construction | Mathematical models
- Contamination (Technology) -- Mathematical models
- Continuous casting -- Mathematical models
- Continuum damage mechanics -- Mathematical models
- Continuum mechanics -- Mathematical models
- Continuum mechanics -- Mathematical models
- Control theory -- Mathematical models
- Control theory -- Mathematical models
- Control theory -- Mathematical models -- Congresses
- Convection (Meteorology) -- United States -- Mathematical models | Evaluation
- Convection (Oceanography) -- Mathematical models
- Cooling towers -- Environmental aspects | Mathematical models
- Cooperation -- Mathematical models
- Cooperation -- Mathematical models
- Cooperation -- Mathematical models
- Cooperation -- Mathematical models -- Congresses
- Cooperative marketing of farm produce -- United States -- Mathematical models
- Cooperativeness -- Mathematical models
- Cooperativeness -- Mathematical models
- Corals -- Florida | Dry Tortugas National Park -- Mathematical models
- Corporate culture -- Mathematical models
- Corporations -- Finance | Mathematical models
- Corporations -- Finance | Mathematical models
- Corporations -- Growth | Mathematical models
- Corporations -- Mathematical models
- Corporations -- Valuation | Mathematical models
- Corrosion and anti-corrosives -- Mathematical models
- Cosmology -- Mathematical models
- Cosmology -- Mathematical models
- Cost accounting -- Mathematical models
- Cost accounting -- Mathematical models
- Cost and standard of living -- Mathematical models
- Cost and standard of living -- United States -- Mathematical models
- Cost effectiveness -- Mathematical models
- Costs, Industrial -- Mathematical models
- Costs, Industrial -- Mathematical models
- Costs, Industrial -- Mathematical models | Congresses
- Cotton -- Sudan -- Irrigation | Mathematical models
- Country risk -- Mathematical models
- Country risk -- Mathematical models
- Court administration -- United States -- Costs | Mathematical models
- Cracking process -- Mathematical models
- Cratering -- Mathematical models
- Creation -- Mathematical models
- Creative ability -- Mathematical models
- Creative destruction -- Mathematical models
- Credit -- Management | Mathematical models
- Credit -- Management | Mathematical models
- Credit -- Mathematical models
- Credit -- Mathematical models
- Credit -- Mathematical models -- Congresses
- Credit control -- Mathematical models
- Credit derivatives -- Mathematical models
- Credit derivatives -- Mathematical models -- Congresses
- Credit ratings -- United States -- Mathematical models
- Crime -- Economic aspects | Mathematical models
- Crime -- England -- Mathematical models
- Crime -- Mathematical models
- Crime -- United States -- Public opinion | Mathematical models
- Crime -- Wales -- Mathematical models
- Crime forecasting -- United States -- Mathematical models
- Criminal behavior, Prediction of -- Mathematical models
- Criminal justice, Administration of -- United States -- Mathematical models
- Criminal psychology -- Mathematical models
- Criminal statistics -- Mathematical models
- Criminal statistics -- Mathematical models
- Criminal statistics -- Mathematical models
- Criminal statistics -- United States -- Mathematical models
- Crisis management in government -- United States -- Mathematical models
- Criticality (Nuclear engineering) -- Software -- Mathematical models
- Crop yields -- Mathematical models
- Crop yields -- Mathematical models
- Crops -- Growth | Mathematical models
- Crops -- Growth | Mathematical models
- Crops -- Nutrition | Mathematical models
- Crops -- Nutrition | Mathematical models
- Crops -- Oregon -- Growth | Mathematical models
- Crops -- West (U.S.) -- Growth | Mathematical models
- Crops and climate -- Mathematical models -- Congresses
- Crops and nitrogen -- Mathematical models
- Crops and soils -- Mathematical models
- Crops and soils -- Mathematical models
- Crosstalk -- Mathematical models
- Crowns (Botany) -- Mathematical models -- Congresses
- Cryobiology -- Mathematical models
- Cryptography -- Mathematical models
- Cryptography -- Mathematical models -- Congresses
- Crystal growth -- Mathematical models
- Crystal growth -- Mathematical models
- Crystal lattices -- Mathematical models
- Crystallization -- Mathematical models
- Crystallization -- Mathematical models
- Crystallography -- Mathematical models
- Crystals -- Mathematical models
- Crystals -- Mathematical models
- Crystals -- Plastic properties | Research -- United States -- Mathematical models
- Culture -- Mathematical models
- Culverts -- California | Guadalupe -- Mathematical models
- Culverts -- Northeastern States -- Hydrodynamics | Mathematical models
- Cumulus -- Mathematical models
- Currency question -- Mathematical models
- Current value accounting -- United States -- Mathematical models
- Curves on surfaces -- Mathematical models
- Curves on surfaces -- Mathematical models
- Curves on surfaces -- Mathematical models
- Curves on surfaces -- Mathematical models -- Congresses
- Cushioning materials -- Mathematical models
- Customer loyalty -- Mathematical models
- Cutting stock problem -- Mathematical models
- Cyanobacteria -- Minnesota | Madison Lake -- Mathematical models
- Cycling -- Mathematical models
- Cyclones -- Mathematical models
- Cytogenetics -- Mathematical models
- Cytology -- Mathematical models
- Cytology -- Mathematical models
- Czechoslovakia -- Economic conditions | Mathematical models
- Côte d'Ivoire -- Economic conditions | Mathematical models
- Côte d'Ivoire -- Economic policy | Mathematical models
- Dairy farms -- Economic aspects -- United States -- Mathematical models
- Dam failures -- Mathematical models
- Dam failures -- Mathematical models
- Dam failures -- United States -- Mathematical models
- Dam retirement -- Northeastern States -- Mathematical models
- Damping (Mechanics) -- Mathematical models
- Dampness in buildings -- Mathematical models
- Dams -- Earthquake effects | Mathematical models
- Dams -- Earthquake effects | Mathematical models
- Dams -- Mathematical models
- Dams -- Mississippi River -- Mathematical models
- Data encryption (Computer science) -- Mathematical models
- Data protection -- Security measures | Mathematical models
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.umsl.edu/resource/KBKhQMX-yuA/" typeof="CategoryCode http://bibfra.me/vocab/lite/Topic"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.umsl.edu/resource/KBKhQMX-yuA/">Mathematical models</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.umsl.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.umsl.edu/">University of Missouri-St. Louis Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Topic Mathematical models
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.umsl.edu/resource/KBKhQMX-yuA/" typeof="CategoryCode http://bibfra.me/vocab/lite/Topic"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.umsl.edu/resource/KBKhQMX-yuA/">Mathematical models</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.umsl.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.umsl.edu/">University of Missouri-St. Louis Libraries</a></span></span></span></span></div>