Microfluidics for medical applications, edited by Albert Berg and Loes Segerink
Resource Information
The instance Microfluidics for medical applications, edited by Albert Berg and Loes Segerink represents a material embodiment of a distinct intellectual or artistic creation found in University of Missouri-St. Louis Libraries. This resource is a combination of several types including: Instance, Electronic.
The Resource
Microfluidics for medical applications, edited by Albert Berg and Loes Segerink
Resource Information
The instance Microfluidics for medical applications, edited by Albert Berg and Loes Segerink represents a material embodiment of a distinct intellectual or artistic creation found in University of Missouri-St. Louis Libraries. This resource is a combination of several types including: Instance, Electronic.
- Label
- Microfluidics for medical applications, edited by Albert Berg and Loes Segerink
- Statement of responsibility
- edited by Albert Berg and Loes Segerink
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- 1.2.1.
- Co-axial Flow Systems
- 1.3.
- Wetspinning
- 1.4.
- Meltspinning (Extrusion)
- 1.5.
- Electrospinning
- 1.6.
- Conclusions
- Machine generated contents note:
- Acknowledgements
- References
- ch. 2
- Kidney on a Chip
- Kahp-Yang Suh
- 2.1.
- Introduction
- 2.2.
- Kidney Structure and Function
- 2.3.
- ch. 1
- Mimicking Kidney Environment
- 2.3.1.
- Extracellular Matrix
- 2.3.2.
- Mechanical Stimulation
- 2.3.3.
- Various Kidney Cells
- 2.3.4.
- Extracellular Environment
- 2.4.
- Microtechnologies in the Fabrication of Fibers for Tissue Engineering
- Kidney on a Chip
- 2.4.1.
- Microfluidic Approach for Kidney on a Chip
- 2.4.2.
- Fabrication of Kidney on a Chip
- 2.4.3.
- Various Kidney Chips
- 2.5.
- Future Opportunities and Challenges
- References
- Ali Khademhosseini
- ch. 3
- Blood-brain Barrier (BBB): An Overview of the Research of the Blood-brain Barrier Using Microfluidic Devices
- Albert van den Berg
- 1.1.
- Introduction
- 1.2.
- Fiber Formation Techniques
- 3.2.3.
- Multidrug Resistance
- 3.2.4.
- Neurodegenerative Diseases -- Loss of BBB Function
- 3.3.
- Modeling the BBB in Vitro
- 3.3.1.
- Microfluidic in Vitro Models of the BBB: the "BBB-on-Chip"
- 3.3.2.
- Cellular Engineering
- 3.1.
- 3.3.3.
- Biochemical Engineering
- 3.3.4.
- Biophysical Engineering
- 3.4.
- Measurement Techniques
- 3.4.1.
- Transendothelial Electrical Resistance
- 3.4.2.
- Permeability
- Introduction
- 3.4.3.
- Fluorescence Microscopy
- 3.5.
- Conclusion and Future Prospects
- Acknowledgements
- References
- ch. 4
- The Use of Microfluidic-based Neuronal Cell Cultures to Study Alzheimer's Disease
- Philippe Renaud
- 4.1.
- 3.2.
- Alzheimer's Disease -- Increased Mortality Rates and Still Incurable
- 4.2.
- Unknowns of Alzheimer's Disease
- 4.2.1.
- Molecular Key Players of AD
- 4.2.2.
- From Molecules to Neuronal Networks
- 4.3.
- Why Microsystems May Be a Key in Understanding the Propagation of AD
- 4.3.1.
- Blood-brain Barrier
- Requirements for in Vitro Studies on AD Progression
- 3.2.1.
- Neurovascular Unit
- 3.2.2.
- Transport
- 4.5.
- Questions that May Be Addressed by Micro-controlled Cultures
- References
- ch. 5
- Microbubbles for Medical Applications
- Michel Versluis
- 5.1.
- Introduction
- 5.1.1.
- Microbubbles for Imaging
- 4.3.2.
- 5.1.2.
- Microbubbles for Therapy
- 5.1.3.
- Microbubbles for Cleaning
- 5.2.
- Microbubble Basics
- 5.2.1.
- Microbubble Dynamics
- 5.3.
- Microbubble Stability
- Establishing Ordered Neuronal Cultures with Microfluidics
- 5.4.
- Microbubble Formation
- 5.5.
- Microbubble Modeling and Characterization
- 5.5.1.
- Optical Characterization
- 5.5.2.
- Sorting Techniques
- 5.5.3.
- Acoustical Characterization
- 4.4.
- 5.6.
- Conclusions
- Acknowledgements
- References
- ch. 6
- Magnetic Particle Actuation in Stationary Microfluidics for Integrated Lab-on-Chip Biosensors
- Menno W.J. Prins
- 6.1.
- Introduction
- 6.2.
- Micro-devices-based in Vitro Alzheimer Models
- Capture of Analyte Using Magnetic Particles
- 4.4.1.
- First Microtechnology-based Experimental Models
- 4.4.2.
- Requirements of Future Micro-device-based Studies
- 6.3.2.
- Agglutination Assay with Magnetic Particles
- 6.3.3.
- Surface-binding Assay with Magnetic Particles as Labels
- 6.3.4.
- Magnetic Stringency
- 6.4.
- Integration of Magnetic Actuation Processes
- 6.5.
- Conclusions
- 6.2.1.
- Acknowledgements
- References
- ch. 7
- Microfluidics for Assisted Reproductive Technologies
- Shuichi Takayama
- 7.1.
- Introduction
- 7.2.
- Gamete Manipulations
- 7.2.1.
- The Analyte Capture Process
- Male Gamete Sorting
- 7.2.2.
- Female Gamete Quality Assessment
- 7.3.
- In Vitro Fertilization
- 7.4.
- Cryopreservation
- 7.5.
- Embryo Culture
- 7.6.
- 6.2.2.
- Embryo Analysis
- 7.7.
- Conclusion
- References
- ch. 8
- Microfluidic Diagnostics for Low-resource Settings: Improving Global Health without a Power Cord
- Paul Yager
- 8.1.
- Introduction: Need for Diagnostics in Low-resource Settings
- 8.1.1.
- Analyte Capture Using Magnetic Particles in a Static Fluid
- Importance of Diagnostic Testing
- 8.1.2.
- Limitations in Low-resource Settings
- 6.3.
- Analyte Detection
- 6.3.1.
- Magnetic Particles as Carriers
- 8.2.3.
- Counterfeit Drug Testing
- 8.2.4.
- Environmental Testing
- 8.3.
- Overview of Microfluidic Diagnostics for Use at the Point of Care
- 8.3.1.
- Channel-based Microfluidics
- 8.3.2.
- Paper-based Microfluidics
- 8.1.3.
- 8.4.
- Enabling All Aspects of Diagnostic Testing in Low-resource Settings: Examples of and Opportunities for Microfluidics (Channel-based and Paper-based)
- 8.4.1.
- Transportation and Storage of Devices in Low-resource Settings
- 8.4.2.
- Specimen Collection
- 8.4.3.
- Sample Preparation
- 8.4.4.
- Running the Assay
- Scope of Chapter
- 8.4.5.
- Signal Read-out
- 8.4.6.
- Data Integration into Health Systems
- 8.4.7.
- Disposal
- 8.5.
- Conclusions
- References
- ch. 9
- 8.2.
- Isolation and Characterization of Circulating Tumor Cells
- Leon W.M.M. Terstappen
- 9.1.
- Introduction
- 9.2.
- CTC Definition in CellSearch System
- 9.3.
- Clinical Relevance of CTCs
- 9.4.
- Identification of Treatment Targets on CTCs
- Types of Diagnostic Testing Needed in Low-resource Settings
- 8.2.1.
- Diagnosing Disease
- 8.2.2.
- Monitoring Disease
- 9.6.3.
- Microfluidic Devices to Isolate CTCs Based on Physical as well as Immunological Properties
- 9.6.4.
- Characterization of CTCs in Microfluidic Devices
- 9.7.
- Summary and Outlook
- References
- ch. 10
- Microfluidic Impedance Cytometry for Blood Cell Analysis
- Daniel Spencer
- 9.5.
- 10.1.
- Introduction
- 10.2.
- The Full Blood Count
- 10.2.1.
- Clinical Diagnosis and the Full Blood Count
- 10.2.2.
- Commercial FBC Devices
- 10.3.
- Microfluidic Impedance Cytometry (MIC)
- Technologies for CTC Enumeration
- 10.3.1.
- Measurement Principle
- 10.3.2.
- Behavior of Cells in AC fields
- 10.3.3.
- Sizing Particles
- 10.3.4.
- Cell Membrane Capacitance Measurements
- 10.3.5.
- Microfluidic FBC Chip
- 9.6.
- 10.3.6.
- Accuracy and Resolution
- 10.3.7.
- Antibody Detection
- 10.4.
- Further Applications of MIC
- Isolation and Identification of CTCs in Microfluidic Devices
- 9.6.1.
- Microfluidic Devices for CTC Isolation Based on Physical Properties
- 9.6.2.
- Microfluidic Devices to Isolate CTCs Based on Immunological Properties
- 10.5.
- Future Challenges
- References
- ch. 11
- Routine Clinical Laboratory Diagnostics Using Point of Care or Lab on a Chip Technology
- Istvan Vermes
- 11.1.
- Introduction
- 11.2.
- Point-of-care Testing
- 10.4.1.
- 11.2.1.
- Categorization of POCT Devices
- 11.2.2.
- Role of POCT in Laboratory Medicine
- 11.3.
- Glucometers
- 11.3.1.
- The WHO and ADA Criteria of Diabetes
- 11.3.2.
- Plasma Glucose or Blood Glucose
- Cell Counting and Viability
- 11.3.3.
- Glucometers in Medical Practice
- 11.3.4.
- Glucometers in Gestational Diabetes
- 11.3.5.
- Continuous Glucose Monitoring
- 11.4.
- i-STAT: a Multi-parameter Unit-use POCT Instrument
- 11.4.1.
- Clinical Chemistry
- 10.4.2.
- 11.4.2.
- Cardiac Markers
- 11.4.3.
- Hematology
- 11.4.4.
- Clinical Use and Performance
- 11.5.
- Conclusions
- References
- ch. 12
- Parasitized Cells
- Medimate Minilab, a Microchip Capillary Electrophoresis Self-test Platform
- Jan C.T. Eijkel
- 12.1.
- Introduction
- 10.4.3.
- Tumor Cells and Stem Cell Morphology
- 10.4.4.
- High-frequency Measurements
- 12.3.
- A Lithium Self-test for Patients with Manic Depressive Illness
- 12.4.
- Validation Method
- 12.4.1.
- Applied Guidelines
- 12.4.2.
- Acceptance Criteria
- 12.4.3.
- Sample Availability, Preparation, and other Considerations
- 12.2.
- 12.5.
- Validation Results
- 12.5.1.
- Reproducibility
- 12.5.2.
- Linearity
- 12.5.3.
- Method Comparison
- 12.5.4.
- Home Test
- Microfluidic Capillary Electrophoresis as a Self-test Platform
- 12.5.5.
- Other Study Results
- 12.5.6.
- Final Evaluation
- 12.6.
- Platform Potential
- 12.6.1.
- Current Platform Capabilities
- 12.6.2.
- Future Possibilities and Limitations
- 12.2.1.
- 12.7.
- Conclusions
- Acknowledgements
- References
- Conducting a Measurement
- 12.2.2.
- Measurement Process
- 12.2.3.
- From Research Technology to Self-test Platform
- Control code
- 898200196
- Dimensions
- unknown
- Extent
- 1 online resource (xvii, 303 pages)
- Form of item
- online
- Isbn
- 9781849737593
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations
- http://library.link/vocab/ext/overdrive/overdriveId
- 31789781849737593
- Record ID
- .b131861256
- Specific material designation
- remote
- System control number
- (OCoLC)898200196
Context
Context of Microfluidics for medical applications, edited by Albert Berg and Loes SegerinkInstantiates
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.umsl.edu/resource/bsgZmXdfAWg/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.umsl.edu/resource/bsgZmXdfAWg/">Microfluidics for medical applications, edited by Albert Berg and Loes Segerink</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.umsl.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.umsl.edu/">University of Missouri-St. Louis Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Instance Microfluidics for medical applications, edited by Albert Berg and Loes Segerink
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.umsl.edu/resource/bsgZmXdfAWg/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.umsl.edu/resource/bsgZmXdfAWg/">Microfluidics for medical applications, edited by Albert Berg and Loes Segerink</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.umsl.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.umsl.edu/">University of Missouri-St. Louis Libraries</a></span></span></span></span></div>